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We study how Thomson’s formulation of the second law of thermodynatmisvork is extracted from an
equilibrium ensemble by a cyclic procgssmerges in the quantum situation through the averaging over
fluctuations of work. The latter concept is carefully defined for an ensemble of quantum systems, the members
of which interact with macroscopic sources of work. The approach is based on splitting a mixed quantum
ensemble into pure subensembles, which according to quantum mechanics are maximally complete and irre-
ducible. The splitting is done by filtering the outcomes of a measurement process. The approach is corroborated
by comparing to relevant experiments in quantum optics. A critical review is given of two other approaches to
fluctuations of work proposed in the literature. It is shown that in contrast to those, the present definision
consistent with the physical meaning of the concept of work as mechanical energy lost by the macroscopic
sources, or, equivalently, as the average energy acquired by the ensg@imhleplies to an arbitrary nonequi-
librium state. There is no direct generalization of the classical work-fluctuation theorem to the proper quantum
domain. This implies nonclassical scenarios for the emergence of the second law.
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[. INTRODUCTION tity unambiguously defined both in and out of equilibrium
for any (quantum or classicakystem interacting with exter-
nal macroscopic work sourcésAs the main consequence,
The second law of thermodynamics was deduced in th@homson’s formulation is the only one that is valid for both
19th century, and formulated for a single closed system, in #inite and infinite systems which do start in equilibrium, but
way resembling the laws of mechanics-6]. It was, how-  can be driven arbitrarily far from it by external sourdsse
ever, already the insight of MaxwdIF,8] and Gibbg9] that  [23] and Secs. Il C and VII for more deta)ls
this law has in fact a statistical character, and refers to aver- The standard understanding of the second law and fluc-
ages over an ensemble of identically prepared systems, rathrations is based on Einstein’s formula relating entropy to the
than to a single system. This viewpoint became widely acprobability of a fluctuation around equilibriupi-3,5. This
cepted since the beginning of the 20th century, when the firstuffices for the purposes of near-equilibrium thermodynam-
robust observations of fluctuations were méd'ﬁ)gether ics of macroscopic bodies, in particular, because all the for-
with the theoretical work of Boltzmann in the kinetic theory mulations of the second law are equivalent for them and
of gases and of Smoluchowski, Fokker, Planck, and Einsteigntropy is defined unambiguously. In the more general case
in the physics of Brownian motion, they formed a consistentof finite systems and/or systems driven strongly out of their
picture of the second law as emerging from microphysicéﬂiti&' equilibrium, relations between the second law and
through averaging over fluctuations. A detailed summary ofluctuations ought to be studied anew for each meaningful
this activity is presented in the book by Epstél, while ~ formulation of the law separately.
Tolman [2] discusses theoretical aspects of the situation. The purpose of the present paper is to understand how
Since then, the statistical understanding of the second lathomson’s formulation of the second law in the quantum
has entered several modern books of statistical physics arfdtuation emerges through the averaging over fluctuations.
thermodynamic$3,4]. The current perspectives on the clas- More specifically, if thelaveragg work done on the initially
sical and quantum Brownian motion in the context of theequilibrium ensemble during a cyclic process is always non-
second law can be found in Refd3-15. negative, what are fluctuations of this work, and how do they
At the end of the 1970s several groups independentipehave? There are definite answers to these questions in the
gave a derivation of Thomson’s formulation of the SecondClaSSica| situation: the definition of fluctuations of work is
law [16—22, no work can be extracted from an initially ca- Straightforward, and model-independent information on them
nonical equilibrium system by means of a cyclic thermallyiS given by an equality first derived by Bochkov and Kuzov-
isolated processstarting directly from quantum or classical lev in 1977[16] (BK equality. Later on, this equality, some-
Hamiltonian equations of motion. The very p053|b|||ty of times also called the work-fluctuation theorem, was extended
getting this thermodynamical result directly from equationsto noncyclic processe$24], and has undergone various
of motion is due to the fact that work is a transparent quan-

A. Classical situation

Yt was thus rather surprising to see recent claims on “violations of These features of work are in contrast to those of entropy, whose
the second law10] or “transient violations of the second law” meaning is too closely tied to equilibrium states of macroscopic
[11] due to fluctuations; see in this context our commér. bodies.
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generalizationg.The basic messages of the classical BKshould be able—at least in principle—to use precisely this
equality are recollected and reviewed in Sec. Il E. amount for the standard purposes, e.g., for driving motors.
(Basic features of work are recalled in Sec. I) B.

Both these conditions are naturally satisfied by the classi-
cal definition, and in our opinion without them the very pro-

While these developments concern the classical situatiorgram of studying the emergence of the second law in the
a number of recent works are devoted to quantum extensiorguantum situation becomes ill defined.
of the BK equality[27—32. The first definition of fluctua- It appears to the present authors that, as we discuss below
tions of work in the quantum situatiofand a quantum ex- in Sec. VI, neither of the existing two quantum
tension of BK equality was proposed by Bochkov and Ku- approaches—in the way they stand presently—can be
zovlev themselveg16,18. It is based on constructing a viewed as providing a proper definition of fluctuations of
certain operator in the Heisenberg representation, associatingprk in the quantum situation. Both approaches fail out of
it with an operator of work, and thus treating work as anequilibrium (no first condition, while even for an initially
ordinary quantum mechanical observable pertaining to thequilibrium state it is not clear that the second condition is
system and not to the work source. satisfied

Another extension was initiated by Kurchf®8], based
on two-time measurements of energy. This second approach
is closely tied to the Schrodinger representation.

There are therefore two different approaches to the defi-
nition of fluctuations of work and to quantum extensions of These are the reasons to introduce in the present paper a
the BK equality; both of them attracted attention recentlypossibleapproach to quantum fluctuations of work that will
[27,29-32, and are reviewed below in Sec. VI. However, the satisfy the above two conditions. It starts with explicitly re-
fact that in the quantum situation these two approaches fagpecting the first condition, that is, always defining realiza-
defining fluctuations of work are differeri82] is already tions of (the random quantijywork as some average energy
calling for attention to the situatich. given off by the macroscopic source of work. If the corre-
sponding ensemble of physical systems already consists of
subensembles, nontrivial realizations can be defined via the
average energy exchange of each subensemble with the

Our objective is to propose a third definition of fluctua- source’ For a classical ensemble each single member com-
tions of work, which is motivated by the fundamental phys-pletely characterizes a subensemble, and the classical defini-
ics of quantum(subensembles. The definition is guided by tion of fluctuations of work follows naturally. In contrast, a
the following observation. Since the usual work is now pre-quantum equilibrium state is described by a homogeneous
sented as an average of a random quantity—for the momeiuantum ensemble, the Gibbsian ensemble, which by itself
we leave unspecified whether this is a random classical quamloes not consist of subensembles. This prevents us from pro-
tity or an operator—it is natural to require the following two ceeding as such. First, the Gibbsian ensemble has to split
conditions on itgfluctuating realizations and on its average. with the help of a selective quantum measurement into a set

(1) Once the average work is unambiguously defined fof (homogeneoyssubensembles. Thus, the initial Gibbsian
any quantum system starting in an arbitrary initial state ang&nsemble is transformed into an inhomogeneous ensemble
interacting with a macroscopic source of work, the samgwith the same density overall matfiwhich alreadyconsists
should hold for fluctuations of work. In particular, the gen- of the subensembles. The obtained structure of these suben-
eral definition shouldchot be restricted tdinitially) equilib-  sembles does depend on the type of measurement, and as a
rium states of the system, since one part of statisticatonsequence the resulting fluctuations of work in the quan-
thermodynamics deals with work extraction from nonequi-tum situation appear to be context dependent. The role of
librium systemg3,33], and one should, of course, be able to contextuality in quantum physics has been strressed over and
define fluctuations of work in this most general situation. over again; see, e.g[34,35. Second, systems from each

(2) Realizations of the random quantity work should havesubensemble interact with the work source which realizes on
the same physical meaning of mechanid¢agh-gradeglen-  them the same process. Realizations of work are defined via
ergy as the usudlaverage work. In particular, if one hap- the average eneréyeceived by each subensemble. Each re-
pens to extract some work from a single realization, onealization has its probability naturally determined by the

B. Quantum situation

D. A different approach to fluctuations of work in the
guantum situation

C. General conditions on fluctuations of work

3A rather complete account of various generalizations of the clas- ®Neither of these points was discussed in papers which support
sical work-fluctuation theorem, as well as its relation with otherthose definitions; see, e.§16,18,27,28,30-32
fluctuation theorems, e.g., those describing entropy production, is ®As with any exchange process, this is operationally characterized
given in Refs[25,26]. Local versions of the fluctuation theorems by measurements at two different times.
are also discussed there. 7Normally this averaging is done either by letting many identi-
“The difference in viewpoints is not completely unexpected, sincecally prepared systems interact with the work source, or by operat-
the work as it appears in statistical thermodynanji2s5] is an ing with a single system but repreparing its state after each interac-
essentially classical quantitynechanical energy transferred from a tion period. Both these ways are feasible and are realized
classical source of wojk experimentally; see Sec. Il G for more details.
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weight of the corresponding subensemble in the ovéiall  work via quantities referring to the open system ofdge
homogeneoysensemble. Sec. Il B.
Within this approach each realization of the random quan-
tity work is already a partially averaged quantity: it refers to
a subensemble rather than to a single system. Recall that
already in classical statistical physics there are two strategies The paper is intended to be self-consistent and is orga-
for studying fluctuationd3]. In the first case, the studied nized as follows. In Sec. Il we recall the definition of fluc-
quantity (e.g., energy has a direct mechanical meaning. In tuations of work in the classical situation and review the BK
this situation it can be measured directly, and its fluctuationgquality and its consequences relevant for the emergence of
are represented by outcomes that vary from one measuréie second law. In Sec. lll we present the definition of fluc-
ment to another. In other cases the quantity of intef@sf, tuations of work in the quantum situation. This is the central
the temperatupehas itself only a statistical meaning. Then section of the paper which addresses the definition of work
some averaging has to be done before realizations of thiand physics of quantum ensembles, and finishes with a de-
random quantity can be obtained. In practice, it will oftentailed discussion of the physical meaning of the approach.
happen that nature is doing this for us, for example, when w&his section also outlines generalizations of the approach
measure the temperature of a liquid. There are cases, hownd connects it to relevant experiments. The dispersion of
ever, where the averaging has to be done by hand, which igork is studied in Sec. IV. In Sec. V we show that fluctua-
close to the typical coarse-graining done in sociological extions of work in the quantum situation are not controlled by
periments(e.g., the height of persons being in a certain in-any direct analog of the classical BK equality. An anticlassi-
terval). cal scenario for the emergence of the second law in Thom-
In quantum mechanics a similar situation shows up: wherson’s formulation is described in Sec. IV.
measuring the energy of a particular member of an ensemble, In Sec. VI we make a comparison with the two known
this member can be said to have that value of the energy aftepproaches on fluctuations of work in the quantum situation
the measurement, since quickly repeated measurements wilo preliminary knowledge of these subjects is assymed
give the same answer. The approach of this paper will be t@hese approaches offer different extensions of the classical
put forward the idea that fluctuations of work in the quantumBK equality. We do not intend to imply that these approaches
situation have the same nature as fluctuations of temperatut® not have a physical meaning or that they cannot be useful
in the classical situation: subensembles are needed to defiffier their own sake. We only state that—in the way they stand
(partially averagepvalues of work. presently—they do not describe fluctuations of work in the
The presented approach, deduced from conceptual consigroper quantum situation. Sections 1l and VI can be read
tency, appears to be related to certain quantum optical exndependently from the rest of the paper.
periments, whickithough never interpreted in this welyave We close with a summary of our results. Some details are
been realized by observing fluctuations of work; see Seaworked out in Appendixes.
lG.

F. Guidelines for reading this paper

Il. CLASSICAL FLUCTUATIONS OF WORK AND BK
E. Implications for the emergence of the second law EQUALITY

As one of the main results of our approach, the second A. The setup
law in Thomson’s formulation—whose statement reads in

h wav in both quantum and classical reaimes—nhas in Consider an ensemblg of identical classical systemS
€ same way q g which are thermally isolatefi3,4]: they move according to

those two situations rather different scenarios of emergencq, i swn dynamics and interact with an external macro-

The basic qualitative difference is that, in contrast to CIaSS'CSSCopic work SourcéV. This interaction is described via the

the fluctuations of work in the proper quantum situation are.. _
. . ={R
not controlled by any direct analog of the BK equality. Moreetlme dependence of some parameteR(t)={Ry(b),

specifically, in classics the structure of work as a randonEZ(]E)' 32 of the system’s Hamiltonia(t)=H{R()}; see
quantity is such that there have to be realizations that provid efs.[3,4].

work (i.e., that are active In the quantum case, however, The parameters move along a certain traject&i(y)
there need not be any active realizati¢active suben- which at some initial timé=0 starts fromR(0), and ends at

semble. R(7) at the final timet=7. Cyclic thermally isolated pro-

We have taken the simplest situation that allows one t¢€sses are defined (0)=R(7) and thus
study Thomson’s formulation of the second law and fluctua-
tions of work, that is, we consider a finite quantum or clas- H{R(7)} = H{R(0)} = H. (1)
sical system interacting with external sources of work. The L o o ]
restriction to finite—though possibly large—systems is atAt the initial time the ensemble is in equilibrium, that is, the
any rate natural for studying fluctuations, and allows us tg®@mmon probability distributiofP(x, p;t=0) ="P(x,p) of all
focus on the conceptual issues connected to fluctuations ¢ canonically conjugated coordinates=(xy, ... ,X,) and
work. The approach is generalized directly for systemgnomentap=(py,...,p,) is given by the Gibbs distribution
coupled to an environmerge.g., thermal bathsand under with the initial Hamiltonian H(x,p) and temperaturel
certain natural conditions allows us to express fluctuations of1/8=0:
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@ BH(xp)
Z

dH(X,p;t)

P(x,p) = —a (6)

, Z=fdx dp ePHp), 2) w:f dtfdx dpP(x,p;t)
0

To get from here to E(5) one performs integration by parts,
%ises the standard boundary conditions, thaPig, p;t) de-
cays forx— to or p— t, and employs Eq(3). This for-

This equilibrium distribution can be prepared by means of
thermal bath coupled with the systefafor t<O0. It is as-
sumed that for times th. 7 the systemS is decoupled .. mula for W is more general and can be applied to processes
from the bath—an alternative assumption would be that it hat involve an environment

coupling to the bath is so weak that it can be neglected in the '

considered time interval—and the evolution of the ensemble

is described by the Liouville equation f@(x,p;t): C. Fluctuations of work

) ) Though the ensemblé is described by the probability
APX,P:) = dH(x,p,b) IPXPIY  JH(X,p,t) IPXPt) _ distribution’P(x, p), each single systeisi from this ensemble
p X X p has at a given moment of time explicit values for all its
(3)  dynamical variables. These values may vary from one single
system to another due to the distribution of initial conditions.
Each single member of the ensemble is then coupled to
B. Work the external source of work that realizes on it a unique ther-
mally isolated procesg&he same for all membersin other
In statistical thermodynamics there are two alternativewords, the same parametd®&) of the Hamiltonian are var-
definitions of work[2—-4,6,38. Both are necessary for the ied in the same way for each member. The motion of the
proper understanding of its physical meanjdg36,37. The  single system is described by E) with now P(x,p;t)
first reads as follows. The workV is the average energy being a product of twos functions 8(x—x(t))s(p—p(t)),
gained byS during a thermally isolated system-work-sourcewhich are probability densities concentrated at the solutions
interaction with)V [3,4]. of the canonical equations of motion:

p=-aHXp;t), X=dH(Xp;t). (7

W:de ddP(x,p; DH(X,p;7) = PX,P)H(X,p;0)]. (4)  The trajectories generated Ify), together with their initial
conditions distributed according to E@), serve agealiza-
Due to conservation of energW is equal to the average tions of the random process given by ES).
energy lost by the work sourdd’. This definition wagim- The work w(x,p) exchanged in each thermally isolated

plicitly) proposed by Caratheodof§6]. A concise history of  process can then be calculated consistently with(Exj.
various definitions of work is given if38], while various

perspectives of work in classical mechanics are reviewed in w(x,p) = H(X(7),p(7); 7) = H(X,p) 8
[39].
For cyclic processes E@4) takes a simpler form, =H(x(7),p(7) = H(X,p), 9

whereH(x(7),p(7); 7) is the value of the Hamiltonian on the

trajectory that started at0 from (x, p), with x(7) and p(7)

being the corresponding solutions @f). This work can be

) . . . observed as the energy decrease of the mechanical degree of
_There is a second, alternative definition going back tOfeedom of the macroscopic work source, or alternatively via

Gibbs and Planck36,38: The negative work W is the en-  gnergy increase of the systef In this latter scenario the

ergy transferred to the work sourdd. Its di;tinguis_hing _energy ofS has to be measured twice, at the momente
feature with respect to other forms of energy is that it can, iny,q .

principle, be transferred with 100% efficiency to other work ~ Tp¢ workw(x, p) for a single system is a random quantity

sources via interactions of the system-work-source type. 13, it varies from one single system to another. It can be
particular, it can be retransferred to collective degrees ofygtive or negative. Its probability distributidP(w) is de-
freedom tha.t perform:lgsspal deterministicnotion gener- termined byP(x,p), since this is the probability with which
ated by a suitable Ha}mlltoman. These degrees of freedom are. . single system enters in the ensemble:
thus purely mechanical and serve as prototypes of macro-
scopic mechanical devicdsuch as a motor, piston, turbine,
etc). For them the differential work can be calculated in the P(w) :f dx dpP(x,p) (W —w(x,p)). (10
usual way of ordinary mechanics, that is, multiplying the
external force by the corresponding displacenjdht There being used no special features of the initial equilib-
Both these definitions of work are expected to be equivarium distribution function, the same definition for the work
lent at least for sufficiently ideal work sourcp$36,37. in a single realization can be given for any initial ensemble.
There is yet another, equivalent formula for the wivk It is seen that the two desired conditions for fluctuations of
the integral of the rate of energy change, work formulated in Sec. | are naturally satisfied: the initial

W:fdx ddP(x,p;7) = P(x,p)JH(X,p;0). (5
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distribution may be arbitrary and “work for a single realiza-
tion” has the same physical meaning as average work.

D. Derivation of BK equality

One now derives the BK equality in the classical situation

for a closed cycld¢16,18,24:

(eh) = f dw P(w)e™ = f dx dpP(x, p; 0)e AP
= i f dx dp g AH(Xp)=Bw(x,p)
Z(0)

1
=—— | dxdp éBhx@®.p(m);7)
Z<0>f epe

:%fdX(T)dD(T)e_ﬁH(X(T)'p(T);T) (11)
Z(T

where we used the Liouville theoredx dp=dx(7)dp(7) and
Egs.(2), (9), and(10). The last equality in Eq(12) is due to
the assumed cyclic feature of the process.

E. Qualitative messages of the BK equality

The BK equality is by itself an exact mathematical rela-

PHYSICAL REVIEW E 71, 066102(2009

[((f - (e’
((F=()?

wheref(x,p) is an arbitrary integrable function in the phase
space, and where

(2P =1 + >1, (15)

<f>5fdx dpP(x,p)f(x,p). (16)
Equation(15) is stronger than Eqa14), since nowe %) is
strictly larger than 1. Equation€l4) and (15) allow us to
understand how relevant the active realizations are with re-
spect to both their probability and the amount of extracted
work.

3. Dispersion of work

For sufficiently high temperatures one can make a cumu-
lant expansion

2
1= exp(— Blw) + %((W2> - (W)Z) F o ) (17)

which shows that for sufficiently high temperatures the ratio
of the dispersion of workw?)—(w)? and its average in-
creases with temperature:

W) = w2 _

w 2T.

(18

tion. Several important qualitative results can be deduced A detailed survey of various cumulant expansion-based

from it.

1. The second law

As the exponential function is convex, one gets directly

1=(e P =e AW and thenW=(w)=0, which is the state-

ment of the second law in Thomson’s formulation: no work

can be extracted from an equilibrium system by means of
cyclic process. This formulation of the second law is well

known and has an independent and more general derivatiq

in both the classical and quantum situati¢hé,19-22,4Q0

2. Active realizations

To satisfy 1=<e %) directly leads to the following obser-

results derivable from the BK equality is contained in Refs.
[16-18.

F. Noncyclic processes

For noncyclic processes there is an analog of the equality
12), which is derived in a similar way with the conclusion

4] (e P =g AFD-FOI  where F(r)=-TIn e is the
(ﬁ)rresponding free energy. This relation allows us to calcu-
ate differences of free energy vinonequilibrium} measure-
ments of worké

This generalized equality is not directly relevant for our
present purposes, because here we are interested in the sec-
ond law in Thomson’s formulation which refers to cyclic

vation: for any cyclic thermally isolated process there aréyrocesses.

realizations which are active, that is, for which work is ex-
tracted after the procese(x,p) <0. The relative weight of

such active realizations can be estimated via the Cauchy indll: QUANTUM ENSEMBLES AND THE DEFINITION OF

equality:

2
1= ( f dx dpyP(x,p)VP(X, p)e“’“”(x'p))

gfdx dpP(x,p)de dpP(x,p)e PP (13)

which can be written as

(e72PWy =1 . (14)

FLUCTUATIONS OF WORK
A. The setup

The quantum setup for studying thermally isolated pro-
cesses is a straightforward extension of the classical one.
(We denote all operators by a care.

An ensemble of identically prepared quantum systeis
is described at=0 by a density matrip(0)=p. The eigen-

resolutions ofp and of the HamiltoniaH read

A stronger relation is obtained using the generalized Cauchy®A number of issues related to this point were discussed in a

inequality (see Appendix A

recent exchange of opiniorf41,42.
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achieved owing to thenacroscopiccharacter ofV, as dis-

n
p= 2 PUP(PH. (19)  cussed irf4].
k=1 A cyclic process at the mometwt 7is defined in the same
way as in classicR(7)=R(0), leading to

n
H=2 ele(ed, (20 A(n) =H(0)=A. (25)
k=1
The HamiItonianI:|(t) generates a unitary evolution:

where{[gi)}e-; afld{|pk>}2:1 with (ey| &))=(p| p1) = 8 are the
eigenvectors oH and p, respectively, which form bases in

the n-dimensional Hilbert spac#/, and wheres, andpy are iﬁa;’(t) =[H®.pO], (26)
the corresponding eigenvalues.
Frequently, but not always, we will consider initially A

Gibbsian density matrices: p(t) =Up(0)Uy, (27)

. e o . it

p(0)=p=7, Z=treFt, (21) Ut=€7p<— Zj ds H(s)), (28

0
e Pek where expand expdenote time-ordered and time-antiordered
Pc= T P =le, k=1,..0n, (22)  exponents, respectively.

~Bey

g’l © B. Work

The whole discussion in Sec. Il B directly applies in the
guantum situation, except th&tis now a quantum system,
and Eqgs.(4) and(5) should be substituted by their quantum
g1 8 S (23)  analogs(i.e., P— p, H—H, and fdx dp—tr). In particular,
the workW done by the external sourd#’ is identified with
the average energy chang4]

where T=1/8=0 is the temperature of the ensemble. We
shall order the eigenvalues bf as

Then according t¢22), the eigenvalues @b will be ordered

as
P1=p,= =P, >0. (24) W=tlp(DH - pH] = tr 50D, (29)
For the Gibbsian density matrix all eigenvalues are strictiywhere we denoted
positive. A mn A A A
Analogously to the classical case, the Gibbsian st Q=UH(nU,-H=UHU,-H. (30

is prepared fot <0 by lettingS interact with a macroscopic OO is th iitoni in th .
thermal bath, and then decoupling it from the bath, so thafi€e U-H(n)U- is the Hamiltonian operator in the Heisen-
the interaction is absent fdr>0. There is, however, a rel- D€rg representation at the end timef the cyclic process.
evant difference between quantum and classical: in the quar-his operato) is sometimes called the “operator of work”
tum situation the coupling a$ with the bath has to be weak [6,16,27. We shall show, however, in Sec. IV A that it is not
for the stationary state @ to be Gibbsiari.A detailed analy-  clear whether it satisfies all criteria to deserve this identifi-
sis of this and similar differences between the Gibbs districation. Moreover, the much weaker interpretatior{bf-by
bution in quantum and classical situations is presented i@nalogy to the classical expressit8—as the “energy dif-

[14,15. ference operator in the Heisenberg representation” is also

At t=0 S starts to interact with an external macroscopici, orect in general: see Sec. IV A. In our approatwil

work sourceV. The resultlng evolution of is generated by always appear inside averages over density matrices as in the
(an effective HamiltonianH{R(t)}, which is time dependent definition of work(29); we do not need any particular inter-
via classical(c-numbey parametersx(t).'° The evolution of pretation of().
S is thus unitary and has the same general features of revers- The remarks we made after E@) for the classical situ-
ibility as the dynamics of a completely isolatéd It is well  4tion are valid in the quantum case as wallis equal to the
known that in general a Hamiltonian evolution of the COM-average energy decrease of the work sourgeThis is a
plete systemS+)V does not redupe to a Hamiltonian ev_oIL_J- classical, mechanical energy which can be transferred with
tion for the state ofS. However, in the present case this is 1000 efficiency to an other work source, and, in particular, it
can be transferred to another mechanical degree of freedom
%Due to weak coupling to the bath, the energy costs for switching?€fforming classical deterministic motion. In that respect
the interaction on and off become negligible. This holds in both thePoth the classical and quantum definitions are consistent and
quantum and the classical situatidis,15. can be indistinguishable from the viewpoint of this mechani-
Note that this time dependence is in the Schrodinger represer¢al degree. This property is the underlying reason why phe-
tation. To avoid confusion we do not deal with the implicit Heisen- nomenological thermodynamics, where (guantum or clas-
berg representation. sica) identification ofS is given, can and does exist.
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The work is typically observed via suitablglassical For a homogeneous ensemidlg) only the density ma-
measurements done on the work source, or, alternatively, byix p is given and no further specification is made about a
measuring the initial and final average energies on the ersingle systens from that ensemble. A typical example is an
semble€. Both these ways are routinely employed in prac-ensemble prepared by thermalization, that is, by letting each
tice, e.g., in NMR and ESR physics, where the syst8m single systens interact weakly with an equilibrium thermal
corresponds to spié under the influence of external mag- bath, and waiting sufficiently long until the equilibrium state

netic fields[43]. of S is established.
Finally, the quantum analog of formul8&) reads Let us study the features of homogeneous ensembles in
. more detail. We start by comparing them to classical en-
W= JTdttr(“(t)dH—(t)> (31) sembles. In the classical situation, the description of an en-
0 p dt /° semble by means of a probability distribution still implies

that each single system has definite valuesdibrits vari-
Equation(29) can be recovered from this formula upon inte- ables. For a homogeneous quantum ensendiffg, only
gration by parts and usin@6). those observablegHermitian operators existing in the Hil-

bert spaceH) A that are dispersionless dfp),
C. Quantum ensembles

The definition of fluctuations of work in the classical situ- AANT2 — +rf A2A
ation was based on the distinction between classical en- [tr(Ap) =A%), (32)
sembles of systems described by a probability distribution
versus a single member of that ensemble. It should not bean be said to have definite values for all single systéms
surprising that fluctuations of work in the quantum situationfrom £(p). Indeed, it is shown in Appendix C that dispersion-
are closely tied to the meaning of what is a quantum enless observables satisfy
semble.

Thus, for our further purposes we need an account of a“l
various features of quantum ensembles and their differences Ap = ap, (33
with respect to the classical ones. There are several sources
in literature[ 34,44—48 where this type of question is studied

. . . . Am,\ —- -~ ~ m .
with special attentiof™ wherea is ac number. This implies (A™p)=[tr Ap]™, with

m=0,1,2,3..., and thabove statement follows. For a pure
statep=|)(y, we return from Eq(33) to the standard no-

. . : tion of |¢) being an eigenstate &.
Within this interpretation of quantum mechanics a quan- . . - .
Any other, nondispersionless observalide-even if it

tum “state” is described by a density matiix[34,44—48. th the densi S d h gef
Any state, including a pure state)(y|, describes an en- commutes with the density matrx—does not have a defi-
pite value in a single syste® from £(p). It is true that for

semble of identically prepared systems. For instance, in a
ideal Stern-Gerlach experiment all particles of the uppetd.B]=0, £(p) can be prepared by mixingpure states en-
beam together are described by the wave fundftipror the — sembles {E(|p){(p)}i=; With probabilities {p}p-;, where
pure density matiXT)(1|. The description is optimal, in the {|po}i; and{pls-, are, respectively, the common eigenvec-

sense that all particles havg=+1, but incomplete in the ¢ of p andB and the eigenvalues f If £(p) is knownto

sense thatr, and o, are unknown: upon measuring either of ) - . -
them. one will gg[yﬂ with equal prgbabilities g be prepared in such a way, thBrhas indeed definite values
This interpretation suffices for describing experiments, in_for each smgle member (ﬂ I—.|o'wever, in general this need
not apply, since there ar@nfinitely) many other ways to

cluding those done on a single systdB%,48,52,53 As a2

compared to other interpretations of quantum mechanics, tHy€épare the same ensemﬁl(e))Nwa mixing N s'u.t?enserrN1bIes
statistical interpretation is dealing more succesfully with aWith density matriced|y,)(t/u[},=; and probabilitieg\,}o-;-
number of conceptual problems, including the quantum mealhey correspond to thénfinitely) many ways in which the

surement problerfid3,34,54. Hermitian operatop can be decomposed E34,46-48

1. Statistical interpretation of quantum mechanics

2. Homogeneous ensembles 2\ixing ensemblest(p;) and&(p,) with probabilitiesp, andp,,

In general, a density matri can be applied to describe respectively, means that one throws a dice with probabilities of

two types of quantum ensemblémmogeneouandinhomo- ~ outcomes equal tp; and p,, and depending on the outcome one
geneous picks up a system frord(p;) or £(p,), keeping no information on

where the system came from. Alternatively, one can join together
- Np; systems from&(p,) and Np, systems from&(p,) (N>1), so
11Though the theory of quantum ensembles is almost as old athat no information is kept on where a single system came from.
guantum mechanics itself, it still attracts lively discussions; seeThen any subensemble &f systems(N>M) is described by the
e.g.,[49-51. It is interesting to note that the basic differences be-density matrixp=pip1+p,p,. Note that the restrictioN>M is
tween classical and quantum ensembles were correctly understoauportant, see, e.g.50], and some confusion arose in the literature
by Elsasser as early as in 193%]. by not taking it into account.
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N N matrices'> For a mixed state all dispersionless observables
P= 2 N, Ae=0, X A,=1, (34 have to be degenerate.
a=1 a=1 Though the features of irreducibility and completeness

create a conceptual difference between pure and mixed den-
sity matrices, this should not be taken as an invitation to
prescribe pure density matrices to a single system, reserving
the mixed ones for ensembles; further reasons for this are
analyzed in Refs[34,45-48 54

where |,) are some normalized—but in general not
orthogonal—vectors existing in the samaimensional Hil-
bert space,*® and wherd,)(y,| are distinct.

The eigenresolutioil9) is only a particular case @B4),
and if now the ensemblé&(p) is prepared by one of the ways

corresponding t@34) with nonorthogona)i,), the constitu- 4. Inhomogeneous ensembles

ents of£(p) come from the subensemblas(|,)(i,|)} and A mixed density matrixp can also describe inhomoge-
the observabl® has in general no definite value for these N€ous ensembles. Such an epsen&;les_ a collection of
subensembles. homogeneous subensembl&S(p,)},-; with probabilities

We conclude with three related features of a homoge{\ataer, SO that each single system frafpis known to be
neous ensemblél) The ensemble cannot be thought to con-taken from the ensembl€(p,) with probability \,, «
sist of definite subensemble®) a single system from such =1, ... N. Obvious cases are when the subensemépg)
an ensemble does not by itself define a subenseniBle; are separated in space—as happens for the two beams of the
There are thus no homogeneous ensembles in classical sfatern-Gerlach experiment—or in time, or by means of some
tistical physics, since a single system is known to have defiother classical quantity.
nite values of all its variables. Inhomogeneous ensembles are typically prepared by
means of selective measuremetitsn that case the above
classical quantity is the corresponding record of the macro-
scopic apparatus by which this measurement was done. Be-

The description of a homogeneous ensemble via pure defw in Sec. lll E we describe in detail how an initially ho-

3. Pure-state ensembles

sity matrices p?=p, has several special features. mogeneous ensemble can be separated into subensembles by
First of all, it is seen from Eq(34) that for a pure state Mmeans of a measurement. o )
p=|¥)y in the right-hand sidéRHS) of representatiofi34) The inhomogeneous ensemigleis still described by the

only one term shows upy)(yl=|y)(y|.* Thus, pure-state overall density matri_xﬁ:E';:ﬁ\ai)m but in contrast to the
ensembles cannot be prepared via mixing of other ensembl@9Mogeneous situation this is not the full description. The
of the systen®, or, put differently, first, pure-state ensembles 1atter is provided by the list
are irreducible; and second, this description is the maximally
completeone possible in quantum mechanics. N Patives- (36)
The latter known thesis can be substantiated as follows.
First one notes from Eqg32) and (33) that for a fixedp ~ So more information is known about the inhomogeneous en-
dispersionless observables form a linear space: if two opergemble; than onlyp. If the inhomogeneous ensemble is just
tors are dispersionless, so is their sum, and multiplication by combination of homogeneous ones, this is obvious. If the
a number conserves the dispersionless feature. inhomogeneous ensemble was prepared by means of a mea-
From Eq.(33) and Appendix C one sees that if the mixed surement, then the above information results from the mea-
density matrixp hask, 1<k=n, nonzero eigenvaluegn  surement carried out and from selection of the outcofses
being the dimension of the Hilbert spakg, then the dimen- more details in Sec. Il E below
sion of the linear space formed by the corresponding disper-

sionless observables is equal to I . S
q BFork=n we getNy =1, since in this case only operators propor-

tional to unity are dispersionless. Fo=2 and k=1, N,=2: all
dispersionless observables for a two-dimensional pure density ma-
trix |¢)(y] can be represented as|)yl+ Bl M|, where

(|, )=0, and wherex and 8 are two independent real numbers.

16 . L . .
This number is maximal fok=1, that is, for pure density Among the reasons we find convincing is the analysis of the
guantum measurement procgs8,54.

matrices. In other words, pure density matrices provide defi- .
P Y P " These measurements need not be done on the systéractly;

nite values for a larger set of observables than mixed densitér1ey can be indirect as well. Imagine an ensemble of two spin-1/2

- particles described by pure density matifi)(¢|, where i)
3Normalization and belonging ti are necessary fdg, )i,/ to  =(1/V2)(|+)1®|+)+]|-)1®|-),), and wheref+), , are the eigen-

describe some ensemble of the syste$ns vectors ofc“r(zl'z) with eigenvalues 1 for the first and second par-
YThis can also be deduced from a more general result]@agy  ticle, respectively. One can now measu?ﬁ), and keep both the

that can appear in E¢34) is orthogonal to the linear space formed results of these measurements and the order of their appearance

by the eigenvectors g corresponding to eigenvalue zero. Indeed, (thus, one keeps a sequence of random numbersFet the sub-

let |0y be one such eigenvector, théd|p|0)=3,\,|(0]#,)|?=0; ensemble of the second spin this amounts to preparation of inho-

thus(0| ¢,)=0 for A, >0. mogeneous ensembi@/2 |+ ), X(+|; 1/2,|-)s |}

Ne=(n—-K)?+1. (35)
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5. Prescribed ensemble fallacy Note that once it is understood that the initial ensemble
This fallacy rests on forgetting the difference between ho£(P) i homogeneous and that measurements are anyhow
mogeneous and inhomogeneous ensenfdigss, that is, it needed to make_lt mhomogeneous, we have to admit any
rests on neglecting that the overgiostmeasurementlen- measurement which will prqduce pure-state ensembles, even
sity matrix p==N_,\ .5, is physically different from the one those with nonorthogonaly,)'s. , ,
before the measurement, even though it is mathematically Recall that the present step of preparing an inhomoge-
still the same(in a Stern-Gerlach experiment the initial beam N€0US ensemble out of the initial homogeneous one is absent
has been split into two pajtsThe fact that many mathemati- N the classical situation, _S|mply because there are no essen-
cal splittings are possible just agrees with the fact that manya"y homogeneous classical ensemiies., each single sys-
experiments are possible in principle. “Switching to anothef€M can be viewed as defining a subensejnble
representation,” as is often done in theoretical considerations (2) This step almost literally repeats its classical analog.
that commit the prescribed ensemble fallacy, is by itself im-1he single systems from each subensendli|es,)(v,|) in-
possible, unless one makes a second measurement setup [§fACts with the work source which realizes the same ther-
any given situation; however, once the experimental setup ig'ally isolated process on each single system from each sub-
determined, there is no choice; instead, the splitting i€nsemble.
unique, physical, and contextual. The evolution of the corresponding subensemble during
In spite of explicit warningg3], the fallacy frequently the cyclic process between times 0 anis given by the von
(re)appears in applications and interpretations of quantuniNéumann equation
statistical physics. Consider, for example, the basic tool of d ~
statistical physics, the equilibrium ensemble described by the ihd—ti)a(t) =[H®),p.0)], p0) = Xtb,, (37)
Gibbsian density matrix21). It is typically obtained by ther-
malization process, that is, due to interaction with a thermal R R
bath. One sometimes hears with respect to this ensemble that XGE UTﬁa(O)Ui. (38)
it represents the system being in states of definite energy . : .
with the corresponding probabilitigs. This is a valid de- (.3) In analogy with the corresponding clas_swal step we
scription of the ensemble only after the measurement of en-eflne the worlw, done on the subensembievia Eq. (5),

) o ) _ or alternatively via Eq(31):
ergy H has been done, something which is not typical in ) A A
applications. Moreover, as we recalled above and below, one w,, = tr(Q|,){#,|) = (¥ (D|H| (1)) = {,(0)|H|,(0)),
can choose to make a different measurement, and then the (39)
interpretation in terms of definite energies will be explicitly
wrong. The reason why some applications—though starting -
from the above incorrect premise—do not lead to contradic- :ffdmlﬁ (t)dH(t)} (40)
tions is clear: they use this premise merely for “explanation 0 o odt |
of what actually happens,” while in real calculations and

comparisons with experiment only the density matélg) is ~ This is the average energy decrease of the mechanical degree
employed. of freedom of the work source due its interaction with the

corresponding subensemble. Thws has the meaning of
D. Fluctuations of work work by itself, but it is a quantity that had to be averaged

. ... _over the subensemble. The probabilityvef is equal tox,,
Once the properties of quantum ensembles are clarlﬂergince, as seen from E€R4), this is the probability by which

we can proceed with the quantum definit_ion Of. fluctuation_sthe corresponding pure subensemble enters the overall en-
of work. The most reasonable way to define this concept INemble described by

the quantum situation is to proceed along the same lines as in
classics, taking into account when needed the dif‘ference\fli
between quantum and classical ensembles.

It is convenient to separate the definition into the follow- W= {wa,)\a}’;‘zl. (41

ng steps. As follows from Eqs.(29) and(34) the work done on the

(1) The initial ensemblef(p) is homogeneous, since it overall ensemble is equal to the weighted average over the
was prepared by means of a thermal bath. With help of & q 9 9

suitable measuremeiisee Sec. Ill E for details one sepa- pure subensembles:
rates £(p) into irreducible, maximally complete suben-

Thus we defined a randomnumber quantity of workw
th realizationsw, and probabilities\ ,:

N

sembles{E(| X w.)IN=, with probabilities{\}\-,, so that W=D AW, (42
the resulting inhomogeneous ensemble is still described by o=t
the same density matrix and thus(34) is valid. Equation(42) remains true for any initial ensemble. This

In the quantum situation irreducible, maximally complete definition of fluctuations of work can be applied to any initial
subensembles are described by pure density matri¢és|. ensemble and not only to that described by the Gibbsian
The important point is thahese subensembles play here thedensity matrix(21).
same role as the single systems for the classical definition of The fluctuations of work do depend on the pure en-
fluctuations of work sembles{|y,)(#,|1\-,, which are defined uniquely once the
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measurement separating the overall ensemble into pure suRow N=n and{éa}n—1:{|aa><aa|}n—1! the latter being the set
ensembles is specified. What we defined as fluctuations ar “ “

thus the ones between subensembie®rsubensemble fluc- (% orthonormal eigenvectprs ot If the spectrum oR hap-
tuations pens to have degeneracies, so that each eigenaglims

If [ I:|]:0 then the ensemble described bis station- multiplicity n,, thenG,, is _the na-Qimensional pr_ojector on
e N o the subspace formed loy, linearly independent eigenvectors
ary: all (one-time averages are time independent. Now note™ .

that the stationary ensemble can be decomposed into nons@f-A which correspond to the eigenvalag. HereN<n is

tionary subensembles, since in genefl, )i,/ ,H]#0. €qual to the number of distinct eigenvaluesfof

This fact implies nothing pathologic, since work is defined If the measurement described by &44) is done on the

for any initial ensemble, not only for stationary ones. It is €nSemble described by a density mafijxhen the resule is

checked from Eq(39) that if there is no interaction with the found with probability

work sources, therf)=0, and all possible realizations of StA A Soan

work are zero. P N =tr(GIG,p) = tr(G,pG]), (45
(4) Note that for macroscopic systems it is not realistic towhere\ ,=0 and="_,\ ,=1, due to Eq(44). After selecting

a

have available measurements producing pure-state subefesults of the measurements referring to the outcanume

sembles, since the directly available measurements are onfas the(suhensemble of systems described by a density ma-
those of macroscopic quantities which are typically degenertrix

ate. In this case we may need to apply a coarse-grained defi- L

nition of fluctuations of work, where the initial mixed en- ., GGl
semble is separated into mixed subensembles described by Pa= "2 o
density matricesr,, (62 # &) tr(G,Gap)

(46)

. . This subensemble occurs with probabilky as given by
p=2 Vy0y vy =0, > vy=1. (43) Eq. (45), simply because this is the probability of the out-
4 v come a. The overall postmeasurement inhomogeneous en-
The definition then proceeds as above, chanding(y,|  semble thugonsists of Nsubensembles each of which has a
— &, in Eq. (39. density matrix(46) and probability(45). The density matrix
This is a coarse-grained definition, since the realization®f the overall postmeasurement ensembt® is
of work tr(Q2c,) can be reduced to more fundamental ones, N
i.e., each of them can be presented as a convex sum of p'= X NPl (47)
a=1

tr(|z//a><¢//a|ﬁ). As a consequence fluctuations of work—as

quantified, e.g., by dispersion of work defined and discussed POVMs are closely related to more usual projective mea-
in Sec. IV—are maximal for pure-state decompositionssurement$34,47,56,57. The detailed outline of this connec-

(more details on this are found in Sec. IV.A tion is given in Appendix D. Here we recall the main items.
(1) Assume that the syste@is coupled to another system
E. Separation of a homogeneous ensemble into pure g initially in a pure state, and then sorftdermitian) observ-
subensembles by filtering outcomes of a positive operator ~ able pertaining t@ is measured. From the viewpoint of the
valued measurement systemsS this then amounts to some POVM.
- (2) Any given POVM can be realized in the above way,
1. Positive operator valued measurements upon the proper choice of the initial state @f the interac-

It is now our purpose to discuss how precisely one sepation Hamiltonian, and the Hermitian observable pertaining to
rates(with the help of measurements and subsequent filterS.

ing) an initial homogeneous ensemidl&) into a mixed en-  Note from Eq.(46) that provided the initial density matrix
semble consisting of pure(necessarily homogenegus P IS pure,p=[#)(#|, the postmeasurement (Aensemblies are de-
subensembles. scribed by pure density matrices as wglj=G,|#)(#G/. In

The most general type of quantum measurement that athis sense a POVM measurement does not introduce noise
lows to produce pure postmeasurement states correspondsit@o the postmeasurement ensembles. More general, noisy
a positive operator valued measROVM) [34,47 defined  measurements are discussed in Appendix D.
via N operatorsG,—not necessarily orthogonal—existing in

the n-dimensional Hilbert space{ and satisfying the com- _ _
pleteness relation Applying a POVM measurement, one now wishes to
separate the mixed quantum ensemble described by the den-

2. Separation of mixed quantum ensemble

N
> GlG,=1. @aq
=1 18 et us stress again that a specific splitting has occurred by

o A choosing the measurement: In the ideal Stern-Gerlach situation, by
The standard projective measurements of an observable choosing the magnets in tizadirection, the original beam is split in

living in the n-dimensional Hilbert spac# and having non-  the z direction with z components of the spins according to the
degenerate spectrufa,}h-, are included in Eq(44), since  beams.
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completed to a unitarjd X N matrix by adding suitable ele-

of the overall post-measurement ensembles should then caients.

incide with p given in (19) or (21), while p/, appearing in
(46) should be pure:

Pec= [Wad(hl (48)

Then the density matrig21) is decomposed as ii34). It will
prove useful to writg34) in an equivalent way

N
p= 2 (W |t = W\l (49)

a=1
since it will allow us to focus or,), remembering that the

probabilities\ , can be recovered vin,={i,| ).
Let us first see whick\ -, and{|#,)(./}\-, can enter

in Eq. (34), and then we shall discuss which specific mea-
surements should be done to achieve the separation. Accord-

ing to the classification theoref®8—61], if one has

m—; = E Mak\“"a(| pk>1 (50)
k=1
o= (Wa| 00) = > Moidpi (51)
k=1

where {p}r-; and {|p}e-; are the eigenvalues and eigen-

functions of the density matrig, and whereM , are com-
plex numbers satisfying

N

ElMakM = &,

kj=1,... (52)

then Eq.(49) becomes=2_plp(pd, as it should? The
converse appears to be true as well: any decompogiign
admits a representat|o(50) with some complex numbers
M . satisfying Eq. (52).%°

As seen from Eq(52), the very possibility of writing Eq.
(49) implies

N=n, (53

sinceM can be viewed an different N- component ortho-
normal vectors. The rectangular mat{M ,J"_,, i, can be

PNote that any vectols,) having(,| #,) <1 and existing in the
Hilbert space formed by the eigenvectorspo€orresponding to its
nonzero eigenvalues, can appear in at least one sepaf@oof p.
This follows from (50).

It is now straightforward to see which POVM achieves
the decompositiori49). Take, for example,

|¢a><¢a|p'” §

Vgl

where |, is defined in Eq.(49). Note that the converse
appears to be true as well. For a given POVAM) with

G, = Wl UXalp™2 (54

GT

(55)

=|m,

and|,) satisfying

N
1= [m)ml, (56)
a=1

which need be neither orthogonal, nor normaliZedne can
construct a representatigd9) and (34) of p as

p= E pH2 N pt2. (57)

Thus, we have seen how all possible decompositions of a
mixed ensemble into pure subensenbles can be constructed
via suitable measurements. We stress that the decomposition
into a specific set of subensembles is related to a physical
measurement, rather than to a mathematical ch@ie-
scribed ensemble fallagy

3. Preparation versus measurements

To avoid possible confusions we recall once again that the
above separation procedure correspondgreparation of
the inhomogeneous ensembie,,, (|, ) ()}, with p
=3 N ){,], starting from the initial homogeneous en-
semblef(p). Though this preparation was based on a suitable
measurement process, we were not interested in some as-
pects usually associated with it. For example, we did not
keep track of the pointer variable of the measuring apparatus,
which obviously should be the main goal of any measure-
ment process studied for its own purpogéd]. We were
more interested by the influence of the measurement process
on the final state of the syste which is the basic charac-
teristic feature of the preparation process in quantum me-
chanics[34].

As we mentioned above, POVMs are related to more
usual projective measurements; 464,47,56,57 and Ap-
endix D for more details. Therefore, the main difference

0To prove this part of the statement recaII footnote 14, expantyetween POVMs and projective measurements lies in the

|¢a) over the eigenbasipy) of p, |¢a) S {pid ¢Q)|pk) substitute
this into Eq.(49), and then deduce E¢52) using the orthonormal-
|ty and completeness of the above base in the Hilbert sféace

SN (pul Y (el PO =(PUlBIP) = Bpic Thus, any decompositic9)
and (34) can be constructed via E¢50) and M = (pk|¢a)/\pk
satisfying Eq.(50). If some eigenvalues gf are equal to zero, then

the above construction should be restricted to eigenvectors of

corresponding to its nonzero eigenvalues.

aspect of the postmeasurement state preparation.

Y%if one assumes in Eq56) that |m,) are normalized(wa|7r )
=1, then this leads to orthogonalltytrﬁ| wa> s Indeed, denot-

ing I,= |ma){(me|, one getSE#B(H Hﬁ) (M) =3N, 101,11,
—Hﬁ(l HB)HB‘O Since(I1 Hﬁ) (H Hﬁ) is non-negative by con-
struction, one concludes thﬂaHB—O for a# B.
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4. An example a way that realizations of work can be deduced by following

For a realistic example illustrating POVM measurements> ONly: This is one of the basic features of the average work,

versus projective ones, let us consider a harmoni@nd this feature is relevant, since by the very definition of the
oscillator—within the optical realization this is a single €nvironment, its state i@t least partially out of observation

mode of an electromagnetic field—with Hamiltonian and control. o
The total Hamiltonian ofS+ B now reads

O —r0a’a T3 af=

H=fiwad'a, [aa"]=1, (58) Aleus(t) = (D) + Flgey, 61)

wherea and a' are, respectively, annihilation and creation .

operators, and where is the frequency. The corresponding whereH(t) is the Hamiltonian ofS describing its interactions

energy levels ares=fiwk, k=0,1,2,....Consider for this with the external fields, and wherdlz,; stands for the

system an initial homogeneous Gibbsian ensenfii¢, de-  Hamiltonian of B and its interaction withS. Note that the

scribed by the density matri@1), p<e™#H, at temperaturd.  coupling betweers and B need not be weak. The situation
We shall outline two realistic ways to separate the initialwhere is a thermal bath, and where the action of the work

homogeneous ensemtfé¢p) into pure subensembles. source is very slow, corresponds to thesua) quasistatic

The first one amounts to measuring the eneh:gpf the thermodynamical processes. .
oscillator. Within the optical realization this corresponds to AssumeAthatS+B IS |n|t|aIIy_|n some (in general corre-
measuring the number of photoa%. The postmeasurement lated stateps.s. One now applies to the systefia POVM
ensembles are described by pure density matrigeg measurement, fpr concretepess the gne given by(%4).

X (e} and the corresponding separationpais given by ~ The corresponding operato@, generalize as
the eigenrepresentatidt9). - — o -

Th(gl SeCOFI)’Id oneis (équ)ally well known, especially in quan- G.= “)‘a|¢a><¢a|p51/2 2 1g, (62)
tum optics[34,48,56,57. It consists of making a heterodyne where ps=trs ps.s is the reduced density matrix aof,
measurement described by POMK#) with |y ), are some pure density matrices existing in the Hil-

) 1 o bert space o8, {\,}\_, are the probabilities of various out-
Go=—|aXd], f dRe(a)d IM(&)G]G,=1, (59  comes of the measurement, angid the unity operator act-
v ing in the space of the environment.
where|a) is the coherent state of the harmonic oscillator, and Once the measurement is carried out and the outcomes are
wherea=Rea) +i Im(a) is a complex index. The last rela- filtered, the postmeasurement statesSef3 read
tion in (59 is the continuous analog ¢#4). Recall that the allfon Al1f2
coherent states are not orthogomb], |[(«|B)2=exp~|a WX Wl © Pog P = Ps PswBPs (63)

PaB~ ’
-pB|?), that is, the heterodyne measurement is a nontrivial Ao

POVM. It is standardly realized by coupling the original \yith 5, , being the postmeasurement staté3oin general it
mode (oscillatop with a probe mode, and then measuring agjffers from the premeasurement stditg=trs ps.z due to
Hermitian observable of the combined system; €84 for  jnitial correlations betweess and .
relevant details. The corresponding decomposition of the Now the work source starts to act on each single system
equilibrium density matri now read456] (the so-called®  from the subensemblg(|y,)(y,| ® py,)- Though the source
representation of the thermal density matrix is acting only viaS, as seen from Eq61), it influences the
e‘BF‘ dRe(a)d Im(e) | o environment, since the_ Iat_ter couplesSoFor the same rea-
p= :f — g el nlaxal, (60) son, the state o+ 5 will (in general not remain factorized
z 7m as in Eqg.(63). Still the workw, done on the subensemble
wheren= (e"“#~1)"L is the average number of photons. E(|lp) ) ® po5) can be expressed via quantities referring

As for another example of physically realizable POVM, © S only: as follows from Eq(31),
note that for photon polarization—one of the simplest cases ; ~
of a two-dimensional Hilbert spaceat POVM measure- Wa=f dttrlﬁas(t)dH—(t)] (64)
ments can be realized via linear optics eleméatg., beam 0 ' dt
splitterg [62].

A — (i) L ds b
Pas(0) = trg & IS Hoes 1, )|
F. Fluctuations of work for a system coupled ~ N
to the environment ® P, p) €00 H5+B(S)]! (65

The above definition of fluctuations of work generalizeswherep,, s(t) is the state ofS at momentt, providedS+5
straightforwardly to situations when in the relevant time in-starts from the initial stat€63). We recall that thgantior-
terval (0,7) the systens interacts with an arbitrary environ- dered exponents are defined by E2g).
ment B (e.g., thermal baths While it is obvious that the Thus the work—done on the whole systeit B through
above definition can be applied directly to the whole systenthe work source coupled t8 only—was defined as a random
S+, our objective is to show that it can be applied in suchquantity with realizationgw,}\_, and probabilitieg\ ,}_,.
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G. On the experimental demonstration of fluctuations of work  the energy levek; (gp), and is realized with probabilitp,
Po) Upon repeating the experiment with other single systems

The above approach to fluctuations of work was based o dom the same ensemblp). The measurement of the en-

the standard knowledge of quantum statistical mechanics and
on a number of reasonable consistency requirements the Y

sought concept was supposed to satisfy. Later on we realized N

thatgthere Wefe alread;}:s)everal exper:?/nents in quantum op- H = eqleoXeq| + e1le1)(e)| (67)

tics that quite closely correspond to the present scheme d@$ thus deduced via observing fluctuations of wpsR]. Its
studying fluctuations of worknot unexpectedly, the experi- fluctuating values argy,=0 with probability \o=p, and w;
mentalists did not think in terms of fluctuations of wirk >0 with probability \;=p;. Thus the average work g/

Let us start with one example of such experiméb@. It =p,w;.?? Later we shall pay attention to the dispersion of
is especially interesting, since fluctuations of work are nowork. Here it equalssw?=p,(1-p,)w?. Notice that there is
extracted as a by-product, but, on the contrary, the very exao ‘active’ subenemble witkv, <0, as would have to occur
periment is realized by their detection. classically, see section Il E. As we explain further on, such

The experiment was carried out with a singf@Hg* ion  indeed needs not occur in the general quantum situation.
confined in a linear rf trap. The same experiment was re- The second experiment is worth discussing, since it real-
peated with manyfrom 5 to 400 independent ions in the ized the first master devidghe ammonia-beam magezver
trap. **Hg" has spin%, and its ground state energy level is to be operated78]. The ammonia molecule NHhas two
split by hyperfine interactions into two levels,) and|e;),  closely located low-lying energy leve|sy) and|e;)—with
g9<eg4, having the total angular momenta 0 and 1, respecthe gape;—¢&q being 23 870 MHz—which form an effective
tively. The differences;—¢g is of the order of the radio fre- two-level system.
guency photon energy. The levels are stable: both the spon- Initially one starts with a high-temperature begen-
taneous decay and the magnetic dipole dgegy— |eg) can  semblg of ammonia molecules, such that the above two lev-
be neglected. There is also the third excited lgwgl which  els are almost equally populated. The members of this en-
is highly unstable, and decays te,) by spontaneous emis- semble are then let to interact with an analog of the Stern-
sion of one optical photon. Gerlach measuring device: An energy measurement is

A laser beam is applied in resonance to the transitiorrealized with help of a strong dc quadrupole electric field.
|e1) = |ep). The transitionge,) = |go) and|e;) < |eg) can be  The resulting subensembles described by the density matri-
neglected: no dynamics is generated if the ion is initially inces|eg){eo| and|e,)(e,| are separated in space: the first sub-
the statde,) (i.e., it belongs to the ensemble described by theensembile is lost, since it was not interesting for the purposes
density matrix|eg){gg|). In contrast, if the ion is initially in  of the experiment, while the second ensemble is directed to
the statde,), the dynamics is that of two energy levéis) high-Q microwave cavity resonant &f—e,=23 870 MHz. A
and|e,) driven by the classical laser fiel@vork sourcgé and  resonant emf field of the cavity realizesmapulse, such that
interacting with vacuum electromagnetic modes which in-the state of the subensemble at the exit of the cavity is
duce spontaneous transitioe,)— |e;) (weakly coupled |ep)g¢| and the resulting energy,—so,=-w,; per molecule
zero-temperature thermal bath has been transferred to the emf field thereby amplifying it.

If after some time the laser field is turned é€fyclic pro-  This corresponds to one realization; of the random
cess, the ion is back to the state,), and the work has gone quantity work. Since no work was exchanged with the first
from the source of the laser field to the bath. It is propor-subensemble, the corresponding realizatiow.is 0.
tional to the total intensity of the spontaneously generated
radiation, and can be observed via measuring this quantity
with help of a photodetector. This work can also be calcu- . . ]
lated via Eq.(64), wherep, s(0)=|e1)(e1|, and wherer is the There are several questions on the physical meaning of
duration of the laser field action. It is important to note thatthe Proposed definition of fluctuations of work that we de-
during the driving by the laser the ion is repeatedly prepare@ded to discuss separately. Some of these questions were
in the state|ey), due to the spontaneous transitigey) asked by ourselves, while others came from our colleagues.

H. Discussion

—|ey). If the laser field acts sufficiently long, ttsngleion ~ Question 1Among all decompositioné34) of the Gibb-
simulates the behavior of the ensemblés;)(e4|). sian density matrix, there is a unique on@ip to accidental
degeneracies of the spectrugiven by the eigenvectors @f

Assume that initially the single ion belongs to the en- A
semble&(p), and realized via measurement of the HamiltonknThen
the energy has a definite value on each subensemble. Should
not one therefore restrict the definition of fluctuations of
p = Poleo)(eq| + PolerXedl, po+pr=1. (66)  work to this separation only?
Answer 1 There are at least two reasons why the answer

Such states are stable and can be prepared by optical pum'ﬁ-no' First, even if the energy has a definite value initially, it

ing. After switching the laser field on and off, one of two

values for the intensity of the spontaneously generated ??This work can be calculated theoretically with the help of quan-
radiation—thus one of two values;, >0 and wy=0 of  tum optical master equations; see, e[48] for solution of similar
work—is observed: a nonzer@erg value corresponds to problems.
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will in general not have any definite value at the final mo- Question 5Is the above ensemble interpretation consis-
ment, since an eigenvector of the initial Hamiltonian maytent with the very idea of thermodynamical fluctuations?
evolve into a superposition of eigenvectors. Second, morg/hen we talk of fluctuations in thermodynamics we think of
general separations are anyhow necessary to define fluctuuctuations of temperature or pressure of the single object in
tions of work for an arbitrary ensemble, which cannot befront of us—changes in time.
decomposed into subensembles with each of them having a Answer 5We mentioned alread§n particular, when dis-
definite value of energy. _ _ cussing experimental realizationthat the ensembléor sta-
Question 21s the orthogonal separation not special by theyisgical) interpretation is capable of describing experiments
fact that various ensembles are described by orthogonal pu(gi, single systems, which are viewed as members of an

density matrices, and can thus be discriminated unambigys,sempie. A single system is even capable of simulating the

ously? . . o .
N . . behavior of the whole ensemble provided it is reprepared in
Answer 2 By definition any POVM is connected with an the same initial state in the course of this evolution.

unambiguous descrimination of its different outcomes. This . . . .
As for the second question, let us imagine we are inter-

can be additionally clarified by looking at the example of theested by fluctuations of energy of a single System in front of

projective realization of a POVM presented in Appendix D, U ) h ¢ thi find
where various subensembles constructed after the measuf&s: YPON measuring the energy of this system we find a

ment are seen to be described by orthogonal wave functiorfi€finite result, but the subsequent measurements of energy
in the composite Hilbert spack @ H'. The above question will record f[h(_a very same valu_e. If we are interested |n_the
mixes the present situation with a different one, where one i§Nergy statistics of the system in the original state, we either
given a single system coming from one of two ensembledlave to have an ensemble of identically prepared systems, or
having nonorthogonal density matrices, and is requested t¢€ have to reprepare the system after each measurement. In
determine by means of a measurement from which ensembtBis sense the use of ensembles seems to be inevitable.
it is coming. Then, indeed, no measurements can ensure un- Question 6 How natural is it that the fluctuations of work
ambiguous discriminatiof47]. are not uniquely defined, since the very separation of a
Question 3 Can an experimentalist come up with a con-mixed ensemble into pure subensembles is not unique?
crete realization for a nontrivial POVM measurement? Mea- Answer 6 To repeat: a homogeneous quantum ensemble
surements are something you have to do in a real life, noflescribed by a mixed density matrixdoes not consist of
just mathematically. pure subensemblesOne needs some measurements to
Answer 3 As we discussed around E(R9), in quantum  achieve its separation—that is, to gain some knowledge on
optics at least one nontrivial POVM ?s routingly realized andsingle systems—and this is a specific physical process per-
employed. More generally, manindirect projective mea-  formed on the ensemble. Fluctuations of work are contex-
surement corrgsponds to a POVM, as fa_lr as the postmeasukey|  since they depend on the type of measurement em-
ment preparation of the target system is concerttiee as- ployed.

pect we are mainly interested)irsee[34,47,48,56,5/ and Question 7 The presented definition of fluctuations of

Apgirédslt)i(o[r: Ilo'lthrg(iarl?tr?grtsllsréscribe the viewnoint that evenwork refers tointersubensembléuctuations, i.e., to a ran-
j P P dom quantity which changes from one subensemble to an-

pure density matricegvave functiong describe an ensemble o .
of quantum systems and not a single system, as some peo;%her' Should not a reasonable definition of such fluctuations

like to think. How will the proposed definition change, if one refer to a random quantity which changes from airegle

. ~ . ) ”
wished to insist on the latter interpretation of quantum me-SyStém to another _ o
chanics? Answer 7 Let us start with a general remark. In statistical

Answer 4 The necessity of prescribing even the pure denPhysics there are two types of fluctuating quantitjés
sity matrices as ensembles of quantum systems was stressel§ctuations of quantities having a direct mechanical mean-
in [34,45-47. In particular, it is needed for the consistent ing, €.9., energy, are defined straightforwardly. These fluc-
solution of the quantum measurement problg#,54. But  tuations are indeed something whi@h the quantum cage
it is also known that with respect to certain aspects of quanchanges from one measurement done on a single system to
tum theory the prescription of pure density matrices to aanother measurement done on another single system from
single system is relatively harmleS§We do not have space the same ensemble. In contrast, the definition of fluctuations
to discuss in detail what are those aspects and what precisety quantities such as entropy and temperature is far less
is meant by “relatively harmless.” We may mention that thetrivial. Indeed, the very notion “temperature of a single sys-
definition of fluctuations of work remains then basically un-tem,” so natural in the everyday life, is based on neglecting
changed, but even becomes conceptually closer to its clasSiuctuations, which allows us to identify an ensemble with its
cal analog, since now in defining fluctuations of work onesingle member. Strictly speaking, both temperature and en-
assumes operations with single systems in both quantum afghpy characterize the ensemble and not a single system.
classical situations. Consistent definitions proposed in the theoretical literature
[3]—and for fluctuations of temperature confirmed by ex-
%3The price to pay is that the relevant information can anyhow beperiment[63]—employ a finite ensemble of systems such

obtained only by doing measurements on an ensemble of identicalshat the standard thermodynamic relations can still be
prepared systems. Ensembles enter anyhow.
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applied?4 In this way, the fluctuating temperatufer en-  studied in quantum opticl66], where separation of an en-

tropy) has the same standard meaning. semble by means ofcontinuou$ measurements are well
Continuing our answer, we recall that it is the necessity tcknown and were studied both experimentally and theoreti-

keep the physical meaning of work that led us to a definitioncally; see[48] for a review. The results we present below on

of its fluctuations which has an intersubensemble charactethe minimal and maximal values of the dispersiw? do not

It remains to stress that within the standard quantum theorgepend on the details 6 and can thus be useful in general.

we do not know how to define fluctuations of work inside of

an irreducible subensemble. There were in the literature A. Maximal dispersion of work

some attempts in this direction, which are described in Sec. o 5 ) )

VI. However, they do not satisfy the natural conditions on "€ maximization oféw” over all possible separations

fluctuations of work, as outlined in the Introductigarbi-  (34) and(70) for givenp and() is carried out in Appendix G.

trary initial state; proper physical meaningn particular, The result reads

this concerns the approach based on the operator of Work.

p|pk 2_
Q 71
IV. DISPERSION OF WORK MW= E p; + pk|<pk| POl - 7D

In Eq. (39) we defined the workw,=tr(Q|,),]) done oo
on the subensembl&(|,){,|). Here we study how the re- :2f dstr[(ﬁi)e‘sﬁ)z] - W2, (72
alizationsw,, of the random quantity work are spread around 0
their mearW=E§=1)\aWa. The most direct quantity that char-

This maximum is reached on the , the eigenvec-
acterizes this spreading is tkiatersubensemb)edispersion gt lams g

tors of the Hermitian operator being

N
o = 2\ J(l Q) ~ QPP (69) =3 2PPdpIp
a=1

o , 73
= D+ P PPyl (73

N N wherep, and|p,) are the eigenvalues and eigenvector$,of
=D N W, - W2= DA WA -WR. (69)  as defined by Eq(19).
a=1 a=l Only whenp andQ commute[p,]=0, does the maxi-
In contrast tow, this quantity depends explicitly on the sub- mal dispersion(71) reduce to the more usual expression
ensembles used to defimg, in (39). So it depends explicitly tr[502]-[tr(5)]2. This and related questions are discussed

on the physical process that separated the initial ensemb|g more detail around Eq$112) and (113.
into subensemble&ontextuality.

It is useful to determine the maxmé\lrvfnax and the mini- 1. Coarse-grained situation
mal ow?,, values of sw? over all possible decompositions

The maximal dispersiofi71) and (72) provides an upper
bound for the dispersion of work defined in a coarse-grained
ay; see the discussion around E43). Indeed, according
o that discussion the coarse-grained dispersion of work de-
fined with respect to separation 6fp) to mixed-state sub-
ensembles reads

{|¢a><¢a| AoJ, corresponding to the fixed density matrix
p= ENzl)\a|¢a><¢a|- According to Eq.(57) these extremiza-

tions can be carried out over all possible decompositions
unity in our n-dimensional Hilbert space,

N

S I,=1, I,=|m)m,, (70) X

a=1 = 2 v [tr(5,Q) - W2, (74)

where{|, )}N have in general to be neither normalized nor

orthogonal. The practical realization of the above extremalote the decomposition of, into some set of pure-state

would require rather specific measurement setups. subensemblesr, = aﬂ(7)|l/f(7><l/fm| whereu'” are the cor-
Note that dispersions similar {&8), with () correspond- responding probabilities WItEa,U, Y=1. One now finds that

ing to some other relevant observable, where introduced artthe dispersiordw? defined as in Eqs(68) and (69), that is,

via the separation of the ensemldép) into pure-state sub-

- ~_ D DN
2*This is not the only definition of temperature fluctuations. Theensemblesﬁ)_z"ﬂv?’“a |¢a ><$a |’ is never smaller than

one proposed if64] follows a different idea, but again refers to an oy
incomplete ensemble. 5 D DAL () 2
SThus if these fluctuations exist, and we assume they do, their ow* -~ éwﬁg? E Vw“ay (e |Q|¢ay> -W)*- bwgg
description seems to be outside of today’s theories. It might be of @y
some interest to see whether more detailed definitions of fluctua- — 2 v M(y) <z/;(7)|f2|z/f(7)>
tions of work can be given in theories of subquantum mechanics, “
e.g., Bohmian or Nelsonian mechanics. A rather natural situation ~ ’
seems to exist in stochastic electrodynamics, but so far this theory -> Mg)((/;fgy)|ﬂ|¢//;])>) =0. (75)
has its own problemgs5]. B
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2. The behavior of the maximal dispersioﬁv\ffnax for high and tryY=0. (82)
low temperatures
With p given by the Gibbs distributior21), (19), and We now intend to show that in the Hilbert spaHeEhere
(22), one gets from Eq(71) are orthonormal base§m)}L; which for the givenY do
satisfy Eqs(78) and(80).
M2, — 0 forT—0, (76) v Eqs(78) and (80)
whereT is the temperature of the Gibbsian ensemble. This is 1. Some concepts from majorization theory
a natural result, as for a finite systefhand T— 0 one gets To this end, let us recall some concepts from the math-

p—|eoXeo|, where according to Eqg20) and (19), le0) IS ematical theory of majorizatioi67—70. For two real vectors

the common eigenvector ¢f and H corresponding to the x=(x;=---=x,) and y=(y;=---=y,), with their compo-

lowest energyassuming that the latter is not degenerads  nents arranged in nonincreasing ways said to majorize,

no separation of a pure state into subensembles is possible,

the work can take only one value. It is obvious that this is a X=<Y, (83

general feature: by construction, the random quantity works the following conditions are satisfied

as defined by Eq(39) does not fluctuate if the initial en-

semble is pure. In the same way as in classics, fluctuations of ¥ «

work are present for mixed ensembles only. In this respect E X < 2 yi, k=1,...n-1, (84)

the dispersion of work is similar to the von Neumann en- =1 =1

tropy S,ny=—trpIn p, which is also equal to zero for pure N N

density matrice$. i Sx=Sy
For very high temperatures, whefe=1/n so thatp; =0 g Y-

=1/n, one gets from Eq(71) (using thatW— 0)

(85

Due to Horn's theoreni67—70, Eq. (83) implies the exis-

W2 = 1 tr(()z) (77) tence of amX n unitary matrixQ;; such that
max "
n n
It is seen that for high temperatures the maximal dispersion X = > Yj|Qij|2- (86)
may beO(1), provided that thépositive) eigenvalues of)? k=1
are finite and do not scale with The proof of this statement is recalled in Appendix F. This

proof is constructive, since it allows us to determiQg,
starting from giverx andy.

Here we show that there are decompositions into suben-
sembles such that for any=1, ... N, 2. The minimal dispersion of work is zero

B. The minimal dispersion of work vanishes

Now denote by(y,=---=Yy,) the eigenvalues of the Her-

N
Wo = (Y| Qi) = 2 AW =W, (78 mitian matrixy arranged in a nonincreasing way. Denote by
AL {ly)}, the corresponding eigenvectors. As follows from
that is, the work does not fluctuate at all. In particular, thisEgs.(82), (84), and(85)
means that the dispersi@iw? attains its minimal value equal
to zero. This fact is in contrast to the classical situation, Y1, -y > (0, ...,0.
where according to points andc in Secs. IE2 and Il E 3,
w(x,p) should be negative at least for some value$xgp),
and the dispersion of work is large at least for sufficiently
high temperatures. n . A
Recall that due to the parametrizatits®), (57), and(70), 0=2 yily;IQly)I? = (vi|Q"YQly:). (88)
Eq. (78) states that for each =1

(87)

According to Eq(86) there exists a unitary operat@rin the
Hilbert space such that

0 ) o g e
— . —tr(pld), - _
<7Ta|p|77a> Q|y|>:|77|>1 I =11 e lnl (89)
where{|7rc,>}§:l with N=n have to satisfy Eq(70). This is  and identifying labels and «, we see that Eq88) and the
equivalent to desired statemeri80) are equivalent.
0 =(m|Y|m,), (80) o . .
C. Dispersion of work averaged over all possible separations
& 1A 12 A of the ensemble
Y = pHOp~ - t[Qplp, (81)

R We have obtained the maximal and the minimal values of
where Y is Hermitian and(in general nondiagonal in the the dispersion of workéw?. It is useful to have a third char-
eigenrepresentation @f and traceless: acteristic value oBw?, the dispersion of work for a randomly
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chosen separation of the initial ensemble describeg inyjo ~ sions of fluctuating macroscopic quantities in statistical
pure subensembles. Such a quantity will not depend expligphysics[3]. Note that even in this limit there is a difference
itly on the specific measurement used for separafien, it  between(92) and the high-temperature behavi@) of the
relates to all measurements that could possibly be jJamel ~ maximal dispersion.

thus will help to understand how typical are the maximal and

the minimal values oBw?. _ _ D. The maximal and the average dispersion of work
Note from Eqgs.(50) and(52) that for a given separation illustrated for a two-level system

of p, that is, for a given representati¢84), the pure density . ions & 5W2

matrices |i4,)(i,| are expressed via elemenid,; of an Let us give concrete expressions &y, and for a

two-level systemS. Two-level systems are of mterest both
experimentally(many applicationsand theoretically(sim-
plest casg The initial Gibbsian density matrix is now a

N X N unitary matrixM [see the remark after E¢53)]. We
shall define the average dispersiﬁmf‘v by assuming thawl
is random, and then integratingw?{M,} over all possible
unitary N X N matrices. Since there are no reasons for intro- 2x2 diagonal matrix with eigenvalues, and p,<p, as
ducinga priori biases, we shall assume for the above |nte~g'Ven by Eq.(19). The most general matrix form of the trace-

gration the most uniform, unitary-invariant measurmar's  less and Hermitian operatét in this two-dimensional situ-

measurg ation is

N ~ _ w X

IT dReM,dIm M;O{M,} WM} ¢ -0/ 3

i,a=1

W, = N ' Equations(71) and(91) produce then the following expres-
IT drReMdIm M,6{M,;} sions for W2, and Sw2,, respectively:
i,a=1
(90 D= (1= x2>(1 (B ) (94)

where®{M,;} comes due to the unitarity constraint

N N N N 1 1-x* 1-x
. W3, = 21—x2[1——— In—], 95
oM =11 5[2 |Mai|2—1] 11 5[2 MaiMBi]. av= ) X2 23 1+x 9
a=1 i=1 a<p i=1
where
The rows(or, equivalently, the column®f the matrixM are
thus assumed to be a set Nforthonormalized, uniformly X=p;-p,=0, 1=x=0, (96)
rqndom vectors. The quantif;, is calculated in Appendix s 5 monotonically decreasing function of temperature, as
H: follows from Eq.(22). As seen from Eq994) and(95), both
n A 2 w2, and w2, are monotonically increasing functions of
pideil Qe - - B> 2
> | R temperaturd. It is obvious thatdwy, > éwg,, except for the
kel 1 +SPkn || =1 l+sp zero temperature situatiokr=1, where they are both equal

to zero. For very high temperatures, that is, for0,
(E p.<8||9|8>> YW (o1) W2, =w?/3 in agreement with Eq(92), while &szaﬁw
i-1 1l+sp +|x]?. Note that off-diagonal elements 6F increasedw?,,

) while sw?, does not depend on them at all.
Note thatéw?, (fortunately depends neither oN nor on the

Oﬁ'd'agonfal E|ement$8‘|ﬂ|gjl> of ). (Recall tfhatN 'hs the. . \I/.THERE IS NO DIRECT ANALOG OF THE CLASSICAL
number of pure subensembles constructed from the original BK EQUALITY IN THE QUANTUM SITUATION

homogeneous ensemble, that can be chosen at will, while

is the fixed number of nonzero eigenvaluespof The discussion in Sec. IV B implies already that, in con-
For p having the Gibbsian forn21), (19), and(22), awgv trast to the classical case, the fluctuations of work in the

has the following features for low and high temperatdrel ~ quantum situation are not controlled by adiyect analog of

goes to zero foll — 0 for the same reasons &s?,., does. In  the classic BK equality11). In the present section we give

max i ) )
contrast, for very high temperatures, whgre 1/n, one has  another illustration of this fact.

from Eq. (91) Assume for concreteness that the Gibbsian density matrix
p in Eq.(21) was separated into pure subensembles by means
Ole:)2 92 of the measurement dfl, that is, the subensembles are de-
av™ nin+ 1)|2l (@il (92 scribed by the pure density matrices)(g|}L,, Where

{le}L, are eigenvectors g.
Under the same natural condition that we adopted for study- According to Eq(39) one has for the realizations of the
ing the high-temperature behavior éW?,,, that is, if the random quantity work

(ei|Q]e;) are finite and do not scale with, we see that o
ow2,o< 1/n for n>1, which is a typical behavior for disper- w; = (g|UTHU Je)) - ¢ (97)
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n of work. Since they both allow us to generalize the classical
=> Cyex—¢, 1=1,...n, (99 BK equality (though in different ways the adoption of ei-
k=1 ther of them will mean that there is no major qualitative
where difference in the behavior of quantum and classical fluctua-
tions of work. It should perhaps be stressed that our concern
Cu = (el U, eI, (99) Is the applicability of these approaches for describing fluc-
tuations of work under conditions formulated in the Intro-
is a double-stochastic matrix: duction; their usefulness for other purposes is not put into
n n question.
kz Ckl = IE Ckl =1. (100)
=1 =1

A. Observable of work
Eachw; has probabilityp, given by Eq.(22). One constructs

N n n Recall from definitiong29) and (30) that for any initial

(€A% = pe = EE expl - B> Cklsk)- (101  ensemble described hy, the average of) is equal to the
I=1 Ziz k=1 work done on the corresponding ensemble.

The approach goes on by statify16,27,32 that the op-

erator() is the “observable of work” in the standard sense of

, 5 quantum observabléd,i.e., the quantity fpQ2]-[tr(pQ)]?

1B o < (P <1 _ﬂe—ﬁsmax’ (109 I8 to be interpreted as the dispersion of work for gy
2z 2Z However, while Qp] happens to be equal to the average

energy lost by the work sourd@/, simply due to conserva-
tion of the average energy during the system-work-source

interaction, this alone is, of course, not sufficient to regAard
103 as an operator of work. In fact, such an interpretation relies
(103 on the analogy between the definitig80) of 1 and the

wheresT=(e;, ... &, is the vector of eigenvalues of, Zis ~ classical expression for the energy differen@. Such
defined in Eq(21), and wheres,,, ande., are the minimal analogies are widespread in general, and once it is accepted

that is, one averages?" directly as was done in the classi-
cal situation. It is shown in Appendix B that

n

A=¢"(1-CCNe =X [(eHle? - (& UTHU J&0?],
k=1

and maximal ones among, ... ,&,). Since all the eigenval- that ) represents the proper energy difference operator, the
ues v of the product of a double stochastic matrix and itsextension of its interpretation toward the operator of work
transpose satisfy € v<1,% one has seems natural.
T T Let us, however, recall from our discussion in the Intro-
A=z(1-CC)e=0. (104 duction that we expect for a proper approach to fluctuations

Thus(e ") is strictly smaller than unity. As compared to our of work to apply in arbitrary nonequilibrium situation. It is

discussion of the classical situation in Sec. I E, the resulthen possible to argue that in genefaldoes not have the

(€M <1 does not in general permit us to draw quantumProper meaning of energy difference operator, let alone its

analogs of the classical features in Secs. Il @sence of Meaning as the operator of work. R

active realizationsand Il E 3(shape of the dispersion at high et the ensemblé(p) have a density matrip(0)=

7. such that0) is an eigenstate o= UTHU,—H with eigen-
value zero:

VI. COMPARISON WITH OTHER APPROACHES

In the present section we study two approaches known in ()|o> =0. (105
the literature. The purpose is to understand whether they
have the proper physical meaning for describing fluctuations
Recall thatU'H(nU,=UHU, is the Hamiltonian in the

25E0r any double-stochastic mati@, consider the matriCCT, Heisenberg representauon at timewhile the Schrodinger
whereCT is the transpose o, and leta; be an eigenvector a€C" picture relatlorH(T) H is due to the assumed cyclic feature
corresponding to a(necessarily non-negatiyeeigenvalue v: of the process. In general,
S=CiCiray=va;.  One  has  [2,CyCyay|=[va|=1la]
<30 ,CiCylal, and thenv=lL |a| <37 |a, that is,»<1, since ———
by defintion an eigenvector should be diffferent from zero. In the >’Once() is given an independent meaning as a quantum observ-
same way one proves that for all eigenvalue®f a stochastic able, there arises a question on its measurability, since the standard
matrix S, =0, 2;S,=1, one hag\|<1. Such a matrix has always theories of quantum measurements, see, [84,47, operate in the
an eigenvalue equal to 1, since it has a left eigenvddiot...., 1) Schrédinger representation. We shall not pursue this problem here,
corresponding to this eigenvalue, and the spectrum is the same ftwt rather take as working hypothesis that this measurement can be
both the left and the right eigenresolutions. carried out.
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[UIHU,,H] # 0, (106 o= Q). M= (olplwy), (111

so that|0) is neither an eigenstate &f'HU,, nor an eigen- then three condition6l10), (111), and(108) imply (109.
state off] To show this we proceed in an indirect way, which is

According to quantum mechanics, EG.05) should be useful by itself. It can be noted that the dispersion

interpreted as follows: the operatél has on the ensemble - - "

£(/0)0]) a definite value equal to zero, that is, if it is inter- tpQ2] - [tr(pQ) 2 = X (wylplwd (e — W) (112)
preted as the operator of energy change, theraflosingle k=1

systemsfrom £(|0)(0]) the energy does not change during f the operatoK) provides an upper bound for the maximal

this thermally isolated process. _ dispersionsw?,_, of work given by Eq.(7):
However, there are concrete examplese Appendix )l

showing that Eq(105) can be consistent with N (p- P02 A
tr(p0) — WP = oW, = o, KRl = 0.

.~~~ ~ ax
(O[UTHU.I™0) # (OH™0) for m>2. (107 2|k-1 Pi + Pk

This shows that the energjoes changesince some of its
moments do. In other words, the interpretation(bfas the ~ The equality in the RHS of Eq113) is realized only ifp and
energy difference operator is in general unsupportable. Not& commute, that is, elthe(rpk|Q|p,> is zero fori #k, or for
that the noncommutativity feature as expressed bY(E0)  gome pairi + k one has(p,/Q|p;) # 0, but the corresponding
is essential for this conclusion, but it is a fact of life. eigenvalues of are degenerate,=p,. Thus w2, can be
1. Restricted interpretation of) equal to ttpQ?)—W2 only if [p,Q]=0.

Now note that if Eqs(110), (111), and(108) are assumed
to be valid, they imply pQ?) -W2-wZ,,<0 simply due
to the definition of the maximal dispersion. This is consistent
with Eq. (113 only for t(p2)—W2- w2, =0, which im-

(113

A more restricted interpretation & can be given in the
light of the definition of fluctuations of work discussed in

Sec. lll. This will also show that ip commutes withQ) (a
semiclassical assumptignour approach is consistent with

that of the observable of work. plies [ﬁ,ﬁ]zo, as we saw above. We conclude that Egs.
Let the eigenresolution df} be (110, (111), and(108) imply Eq. (109, as was promised.
N Thus, wher{p,Q]# 0, Q does not qualify as the operator
0= S ooy (108 of work even in the restricted sense. We also conclude that

o1 though the approach does predict an upper boundsicy
i this bound is not reachabf.

Note that for() to have the meaning of the operator of
work it is necessary that) its eigenvaluegw}iL; have the 2. Generalization of the classical BK equality
meaning of work by themselves, i.ey should have both the

meaning of average energy lost by the work sourgend Though() does not have the meaning of the operator of

th ined b i bl work—except in a restricted sense and under condition
€ average energy gained by a quantum ensemble, as 9—there is an operator generalization of E¢kl) and

discussed in Sec. Il Dji) probabilities of these realizations 12) which Bochk K lev i
of work done on the initial ensemblp) should be given as E16)1\EI§]V' ich was proposed by Bochkov and Kuzoviev in

{<wk|l3| wk>}2:l'

- - tr -BO-BH B ..
Now, if p and(Q) commute, - esip _f ds ESHHesH (114
[5.0]=0, (109 °
then their eigenvectors can be chosen the same, and, by mea- B A Sy
suring Q, p==p plw{(wy can be separated into suben- =tr| ex f ds e>"e 1 (115

sembles {&(|o(w) e, with probabilities p={aw/p|wy).

The work done on each subensemBléw,)(w) equalsw,  We recall its derivation in Appendix & A similar relation

was derived if27].
Let us work out some consequences of 845). As com-

of Q) as an operator of work. pared to the classic case, the matters are complicated by the
Conversely, ifp can be separated into subensembles,

—<wk|Q|wk) and one can admit the restricted interpretation

R ZNote that the difference (02 -W2- oW?
PZE )\k|l70k><'r//k|v (110) =N (<¢ |62|w >_<$ |ﬁ|$ >2)>0 is by itself al _
o1 =30 A o(Ye » Q)2 = y itself always non
negative for any separation gfinto subensembles.
and if each of them is allowed to interact with the work 2°For the equilibrium ensembl@1), the Thomson formulation of
source)V such that the second law can be derived from E¢kl4) and (115 upon the
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presence of anti-time-ordering and the integfélin Egs. =p. (119
(114 and(115). If one insists on not having them, then the . )
equality (114) and (115 can still be converted into an in- Equation(118) is the general quantum formu(Born’s rule),
equality. By applying the Thompson-Golden inequality While Eq. (119 follows from the Gibbsian form21), (19),
[71)%° t{ee®]=tr &*B, valid for any Hermitian operators and(22) of p. The symbolM, in Eq. (118 reminds us that
~ - S ) i ~_ the probability is conditional and refers to the measurement
AA apd B (the equality sign is realized here if and only if of H done att=0. The necessity of such explicit notations
[A,B]=0), one gets will be seen below. Formally it is always allowed, sirmay
probability is conditional.

According to Wigner’s formula for multitime probabilities
in qguantum mechanid¥2], the subsequent measurement of
the energy at the time—represented by the same Hamil-

tonian H due to the cyclic feature of the considered
process—will then produce a resuit with the conditional
probability

n

~ R ~ R l ~ ~
(€ = tr[pe P = D (wylpl e Pk = > trePAPi=1,
k=1

(116

where|w,) and w, are eigenvectors and eigenvaluesfbhs
defined by Eq(108).

If now we could interpref) as the operator of work, that p(Kll, M, M) = [(e] U, e))]2. (120

is, if the eigenvaluesy, of () have the meaning of work by " S

N ; o There are three conditionals for the probability in the LHS of
themselve.zs, we W9UId note thébifp|w is the probability Eq. (120: M, and M, stand for the measurements done at
of observing the eigenvalue, upon the measurement 6f (=0 andt=7r>0, while the index indicates the resuk, of
on the statep, and then Eq(116) would allow us to study the first measurement. The meaning of EtR0) is that the
fluctuations of work exactly in the way we did in Sec. Il E ensemble of systems which during the first measurement at
for the classical situation. We would then draw the sam&=q produced the resulf; is described fot>0 by |e,)(g|.

general conclusions, and the fact t_lﬁﬂalG) is an inequality  The members of this ensemble couple to the work souvge

would only strengtherthese conclusions as compared to theth tate evolves 1t Y |0T t the timet=r. and is then

classical situation. However, as we saw above, it is impos- ¢ >ac EVOVES 108)(e[U; at Ine Imet=7, and IS the
subjected to the second measurement.

sible to identifyfl with the operator work, and thus fluctua- Thus the total probability for having the resut at the
tions of work cannot be studied on the basigi6), except |\ omentt=0 and the results, att=r is given by

for the special casp,]=0, where Eqs(114)—(116) reduce
to the usualessentially classicaBK equality. p(k,1[Mo, M) = p(K[l, M-, Mo)p(l| Mo, M) (121

B. Approach based on two-time measurements of energy =p(k|l, M ., Mq)p(l|Mo). (122

Yet another, different approach to fluctuations of workWhen passing from Eq(121) to Eq. (122, we used the
and extension of the classical BK equality was proposed imbvious relationp(l| Mg, M,)=p(l| M,) (causality, no de-
Refs.[28-30. We shall present it in a more extended form, pendence on the futurelt is to be noted that
since that is necessary for understanding its proper physical
meaning. On the other hand, in order not to dwell on unnec- "
essary technical details, we shall assume that the spectrum of (KMo, M) = E pk, 1Mo, M)

the HamiltoniarH is nondegenerafeompare with Eq(23)] .
= pledUJe)e|Uley, (123
81<82<"'<8n. (117) |

At the timet=0 one measures energgorresponding to that is, the probability to have the resuit in the second
the operatoH) for the ensemble described by the Gibbsianmeasurement is for a general initial density matgixot
density matrix(21). The probability to get an eigenvalug ~ €qual to
of H is seen from Eqs(21) and(20) to be ~
gs21) and (20 p(KM,) = (605U, (124)

p(l|Mo) = (&/|ple) (118 which is the probability to get the resukt in a different
context, where no first measurement was done. Such an
application of the Peierls-Bogoliubov inequalitecalled in Appen-  equality is valid, though, ip commutes witHH, which is the
dix E): e <(1/2)tr P2 AH=1. From this it follows once Case with the Gibbsian density matri®1). Let us first re-
again thatW=tr[(0p]=0. strict our attention to this case.
*The Thompson-Golden inequality is a particular consequence of
the submajorization relation(e**B) <, \(eV2eBe?), where\(A) is
the eigenvalue vector of a Hermitian operafgrsee[69] for the One notes from Eq.120) the double-stochastic feature of
definition of submajorizatior<,, and for more details. p(k|1, M, , My):

1. Another generalization of the classical BK equality

066102-20



FLUCTUATIONS OF WORK FROM QUANTUM..

EP(k“vMTIMO):E p(k“vMTIMO):l! (125)
k=1 =1

and calculates using Eq&l9), (22), (119, and(125):

n
(gPewyy = 2 pMo)p(KI, M., Mo)e e

kl=1

n
> p(kl, M, Mo)ePr=1.

1
- (126
Zyi=1

This is the equality obtained in Ref28-30 as a gener-
alization of the classical BK equality.
Note that for the density matri@21) the average

> p(IMpKI, M, Mo)(ee—e) =W (127

k=1

is equal to the work as defined by EG9). The statement of

PHYSICAL REVIEW E 71, 066102(2005

that forI=n all terms withk#n in Eq. (130 are negative
unlessCy..,=0, which via the double-stochastic feature®f

implies thatC,,.,=0 andﬁnnzl. Continuing along the same
lines for|l<n, one gets that Eq.129 can take place only

when C reduces to unity matrix, or, equivalentlg, reduces
to a permutation matrix

07|8|><8||UI: & ma{ex)]- (131

Thus, in general it is the expressi¢h28) and notg,—¢,
itself that can be interpreted as the work occurring with prob-
ability p;, and this is precisely the point from which we de-
parted in Sec. Ill.

It is also straightforward to see that the approach does not
apply out of equilibrium. The reasons for this are even more
straightforward than for the previous approach.

Recall from the Introduction that the proper definition of
fluctuations of work is expected to apply to any nonequilib-
rium initial ensemble£(o) with density matrixa not com-

the second lawW=0, can once again be deduced from Eq-muting with H:

(126) by employing convexity of the exponent.

2. Critique of the approach

[6,H] # 0. (132

If we were now able to associate the work with a randomln particular, the work averaged over those fluctuations

variable having realizationg:—¢}y,-; and the correspond-

ing probabilities{p(k|l, M, Mo)}},-y, it would be possible
to study fluctuations of work on the base of Efj26), and to

should be equal to the one done on the ensemble.
The present approach is generalized uniquely for arbitrary
initial state: the definitions op(l| M) and p(k|l, M ., M)

draw essentially the same conclusions as we did in Sec. Il i1 Egs. (120 and (118 remain unaltered: one substitutes
for the classical case. It is, however, not difficult to see thatherea instead ofp.

the same criticisms we brought in Sec. VI A with respect to

the “observable of work” applies here, too.
Keeping in mind our discussion after Ed.20), note that
if the ensemble initially described Hyg,)(e|| couples to the

It is now straightforward to see from E@L32) that, due
to nondiagonal terms in o, the average
S0P M) p(k[l, M ., Mo)(e—¢)) is not equal to the

work tr(&fl) done on the overall ensemble:

work source)V, its mechanical degree of freedom loses at

the timet=r the energy
tr(Qle(e]) = (AU Je)e |0 —e. (128

Since the final density matril§d7|s,>(s||01 need not commute

tr(3Q) - > p(|Mop(Kl, M, Mo)(ey— &)

k=1

=t[UIHU(G - |e)al|oleXe)] #0. (139

with H, the energy need not have any definite value at thaThis agument shows again that this approach does not pro-

time, and Eq(128 does in general not reduce &g- ¢, with

any fixedk. Such a reduction takes place, however, when

n
tr(ﬁ07|8|><8||01) = 2 Cklsk: €l forl=1,...n,
k=1

(129

whereC,, is defined via Eq(99), and wherd (1), ... ,m(n))
is some permutation of the sequenck, ... n). Equation
(129 can then be rewritten as

> Cule—#) =0, (130
k=1

where the matrixC=CII the product ofC and the corre-

sponding permutation matrikl, and where we noted that

once the matrice€ and Il are double stochastisee Eq.
(100 for definition), so isC. Note, with help of Eq(117),

vide a good definition for fluctuations of work.

C. The approaches based on the “observable of work” and on
two-time measurements of energy are different

This difference is seen already by comparing ELL6)
with (126). Still, we want to understand this difference in
more detail. More precisely, even though for the initial den-

sity matrix commuting withH, the first and the second mo-
ments generated by the two approaches are equal:

t[pQP1= X p(I[Mop(KIl, M., Mo)(ex—&)?, p=0,1,2,
k=1

(134)

already the third moments are in general differezxen

though[p, H]=0. Indeed, assuming validity of the latter con-
dition, one gets
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R n trasting to entropy, which is well defined only imearly
tr[pQ%] - > p(l|Mo)p(K|l, M., Mo) (e~ )° equilibrium states of macroscopic systems.
kl=1 (b) Thomson's formulation is valid for an;inite31 orin-

L ALA AL A A A finite [20], quantum or classical system interacting with mac-
= tr(€©Q, p]H) = tr(p[H, 2]Q). (139 roscopic sources of work. Not all formulations of the second

The RHS of Eq.(135 vanishes only if[p f)]:O or law have such a universal regime of validity. While all for-

. N AT " . mulations are equivalent in the standard thermodynamical
equivalentlyH,]=0, in addition td p,H]=0, so thall35  yomain, that is, for(nearly equilibrium states of macro-
does not vanish in general.

. . scopic systems, some of them have definite limits when con-
_ Forthe two-level example of Sec. IV @vith nondiagonal  gjgered for finite systenf@3] or for low temperaturefuan-
Q) the RHS of Eq.(135) reads tum domain [14,15.
A~ (c) In its literal form Thomson’s formulation does not
tr(p[H,Q]Q) = (p1 — po) (g1~ €2)[x

2, (136) imply any irreversibility, since the dynamics of the system
where Q is given by Eq.(93), and wherep, and g, are

coupled to work source is unitary and thus formally revers-
A ible: if some work was put into the initially equilibrium sys-

eigenvalues op andH, respectively. For the Gibbsian den- tem it can in principle be extracted back. The irreversibility
sity matrix p, the RHS of Eq(136) has negative sign. with respect to work transfer comes into existence when one
Finally, let us point out that differences between the twotakes into account that in practice no work source can inter-

approaches were recently studied 82] in a different con-  act with all possible degrees of freedom. In particular, if the
text. system was subjected to a thermal bath after it had interacted
with the work source, the system relaxes back to its Gibbsian

D. Summary of the discussion of the two approaches state and the work which had been pUt into it cannot be

We have discussed two approaches known in the Iiterag?;?l\;rae%l?rfggtvivso ;l(rssgr:tc:da[:%mgh%nptge system oriy

ture, and argued that in the proper quantum domain they do (d) It should perhaps be stressed that Thomson'’s formula-

not describe fluctuations of work. Work is a rather part|culartéi7En does not refer to all aspects usually associated with the

form of energy having several _speC|f|c features We_dlscusse cond law, e.g., by itself it does not explain how a sub-
in Sec. Il B. The approaches miss those features, since, as \Aéa

o . stem of a proper macroscopic systétimermal bath re-
argued, they do not ensure that realizations of the claime 9 prop pic sy d

: xes toward a Gibbsian equilibrium state On the basis of
random quantity or operator of work have themselves theI'homson’s formulation it is only possible to argue that—
physical meaning of work. They still allow different gener-

lizati ¢ the classical BK i hich kes th under several assumptions the main of which is the
alizations ot fhe classica equality which makes emadditivityg’z—the Gibbsian state is the only one which forbids
operationally close to the classical situation. These general

Y iaht b ful for thei ke. but not for di lwork extraction viaany cyclic thermally isolated process
zations ight be usetul for their own sake, but not 1or diS-r5q 54 The property of relaxation toward a Gibbsian state is
cussing fluctuations of work.

to be viewed as an independent issue of statistical physics;
its standard classical understanding was reshaped in litera-
VIl. CONCLUSION ture various times; see, e.§14,15,73,74

The second law has a statistical character as it is both
formulated and valid for ensembles of identically prepared
systems. It is therefore of interest to investigate this statisti-
cal aspect in more detail. For the entropic formulation of the

second law, this analySiS is by now a standard Chapter of As we saw in Sec. VI, due to noncommutativity of vari-

statistical thermodynamidd—3]. ous quantum observables, there are different quantities
~ Inthe present paper we studied how Thomson’s formulawhich, in the classical limit, coincide with the random quan-
tion of the second law—no work from an equilibrium en-

semble by a cyclic process—emerges through averaging oveg—— )

fluctuations of work in the quantum situation. It will be use- In this context one sometimes hears that the second law must
ful at this moment to recall the special role of Thomson's'éfer to macroscopic systems, and there is no sense in applying it
formulation, and then to proceed with concluding remarks orfo" finite systems. This opinion is not correct, as instanced by
our results. Recall that a detailed discussion of our approact'omson's formulation. If it were not valid for a finite system

inclucing seversl pertinent questions on its physical meanc 250 LN e 8 Lo A e ancome
ing, was given by us in Sec. Il H. g ’

(21) is prepared under weak interaction with an equilibrium thermal
bath; see, e.g[4]: any cycle violating the formulation for a finite
A. The main features of Thomson’s formulation system can be repeated to achieve a violation for the bath.

of the second law 3’Additivity means that for two noninteracting systems with

(a) The formulat|0n uses the Concept Of Work Wh'Ch |S Ham||t0n|an§ql andﬁz, the Corl’espor‘lding denSIty matrices factor-

unambiguously defined both conceptually and operationallyizes: f)(H1+|:|z)=§(l:|1)®i3(l:|z)- This feature is satisfied for the
both in and out of equilibrium. In this respect work is con- Gibbsian casep(H,) e A1,

B. What appeared to be problematic in defining fluctuations
of work in the quantum situation
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tity work. As often, classical reasoning alone is of no help forthough the work is a contextual random quantity and de-
defining fluctuations of work. pends on the measurement that was done to separate the
One therefore has first to state what basic physical feaiitial mixed ensemble into pure subensembles, one can de-
tures the fluctuations of work are expected to have, as we difine two reasonable quantities—maximal dispersion and the
in Sec. I. Once these features are recognized, the definitiosispersion for a randomly chosen separation on the initial
of fluctuations of work presented in Sec. Il follows natu- ensemble—that depend solely on the internal features of the

rally. system, that is, on its initial state and its time-dependent
o o _ _ Hamiltonian. These quantities were calculated explicitly for
C. What is similar and what is different in classical and any finite quantum system and studied in Sec. IV.

quantum definitions of fluctuations of work?

In both situations the definition of work as a random E- Nonexistence of the direct generalization of classical BK
quantity employs the same idea: the initial homogeneous en- equality
semble of identically prepared systems is separated into irre- In the classical situation fluctuations of work in an ini-
ducible (and homogeneolisubensembles. Both in quantum tially equilibrium state are controlled by the BK equality
and classical situations these irreducible subensembles &ar#6,24. This equality allows one to draw a number of
described maximally completely. In classics they correspondnodel-independent statements on fluctuations of work which
to a trivial subensemble of identical copies of the same syswe summarized in Sec. Il E. In contrast, ttieect generali-
tem (so that within a subensemble no fluctuations arezation of the BK equality to the quantum domain—which
presenk, and they are described via phase-space points anglould allow one to draw similar qualitative conclusion on
trajectories. In quantum mechanics these subensembles, d#ictuations of work—does not exist; see Sec. V. As we dis-
scribed by pure density matricéwave functiong provide  cussed in detail in Sec. VI, there are quantum generalizations
definite (nonfluctuating values for the largest possibleut  of the BK equality, but they refer to quantities that describe
nonexhaustiveset of observables, since the pure-state subfiyctuations of work only if some classical features are
ensemble is not trivial. o present, e.g., those implied by E409. As the main conse-

In classics the irreducible subensembles of the initial eNquence, fluctuations of work in the quantum situation can

semble obviously exist priori, thr_;\t is,_ without need of any p,ve features which are impossible in classics, igter-
measurement. In the quantum situation the very structure (I}]ubensemb)eﬂuctuations can be absent completely.
subensembles does depend on the measurement applied for

the actual separation, or, in other words, for the preparation ACKNOWLEDGMENTS
of an inhomogeneous ensemble. Thus, we need this initial . . L .
preparational measurement, a step which is absent in clas- tiS @ pleasure to thank Roger Balian for inspiring discus-
sics. The above context dependence goes hand in hand wigiPns: We thank Claudia Pombo for critical remarks and for
the impossibility of achieving a complete description of in- Stressing the importance of understanding the concept of
dividual systems in any subensemble. As the main conseéVork. The work of A.E.A is part of the research program of
guence, the separation of a mixed ensemble is not uniqug’]e Stichting voor Fundamenteel Onderzoek der Materie
and thus the random quantity workdentextuain the quan-  (FOM, financially supported by the Nederlandse Organisatie
tum situation. voor Wetenschappelijk Onderzoek, NWO.

In the second step, systems from each irreducible suben-
semble interact with the same macroscopic source. Realiza- APPENDIX A: DERIVATION OF EQ. (15)
tions of the random quantity work are then defined as the Here we recall fron{75] a generalization of the Cauchy
average energy increase of the work source when interactingequality used in Eq(15).
with each subensemble, while the probability of each real- Denote byl'=(x,p) the phase space point. Assume that all
ization is given by the weight of the corresponding subenthe integrals over the phase space used below are finite. The
semble in the initial mixed ensemble. _ desired inequality reads: &), b(I'), x(I') are some func-

In this way the full physical meaning of work is kept, and tjons satisfying
the approach can be applied to any nonequilibrium initial
state of a system interacting with its environment. Indeed, fdl“ a(l)x(I) =0, fdl“ bxT) =1, (A1)
there are experiments in quantum optics which realize obser-
vation of fluctuations of work; see Sec. Il G.

It remains to mention that the idea of the presented defizhen
nition of quantum fluctuations of work agrees with the gen- 5
eral strategy of studying classical fluctuations for quantities dl’ x+I)
(e.g., temperatujewhich do not have a direct mechanical
meaning[3]. Recall that realizations of the random quantity 2
temperature as proposed[®]—and checked experimentally f dr ax(T)
in [63]—refer to finite subensembles, such that the physical

meaning of temperature is kept. fdr a2(T) f dl b4(T) - {f dr a(F)b(F)r
D. Dispersion of work

The most direct quantity that characterizes fluctuations of
work is the dispersion of work we studied in Sec. IV. Al- To prove this, define

(A2)
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A= f drr a*(I), (A3)
B= f dl" b%(I), (A4)
C= f dl a(l')b(I), (A5)
_Ab(I") -Ca(l)

yO=—05"z (AB)

and note that
f dl' x3(T) = f dr' yA(I), (A7)

due to

J dr x(M)y() = J dr' y3(I), (A8)

which is valid by construction$A3)—(A6). Equation(A2)
follows from Eq.(A7). To get from here Eq(15) one iden-

tifies x(I) = /P(T"), b=\/P(T)e D), a=\P(T)(f(T)~(f)).

APPENDIX B: DERIVATION OF EQ. (102)

Let f(x) be a smooth functior{x;}{L, be n points, and

n n
xX= E MXo M= 0, 2 ANe=1. (Bl)
k=1 k=1
Apply the incomplete Taylor expansion fx;):
- ’ f”(gi) 2
f(x) = () + £ () (x; ‘ij"‘T(Xi_% . (B2

where lies betweerx; andx. Denote byXqa.x and Xm, the
maximal and the minimal humbers amorg This implies
Xmax= &= Xmin- NOW assume thalt”(x) is monotonically de-
caying:

" (Xmax) = "(&) = " (Xiin) -
Then using Eqs(B2) and(B3) one has

(B3)

n 1 n
2N Fg) — () = 52 f(&IN(X = X)?, (B4)
k=1 k=1

" min : .
(); )E M= X2 = 2 N (%) — F(X)
k=1 k=1
()

> > Ndx— X2 (BS)
k=1

To derive Eq.(102), start from Eq.(101), and take in Eq.
(B5) the convex functionf=e#¢, B=1/T>0, and identify
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X =&;, \=Cy for each fixed. The desired Eq(102) is then
recovered upon the summation over

APPENDIX C: MAXIMAL DIMENSION OF
DISPERSIONLESS OBSERVABLES

Let tr(A2) =[tr(Ap)]? be valid for some Hermitian opera-

tor A and density matrixp. In the main text we called such
operators dispersionless with respect to the ensemble de-
scribed by the density matrix

In the Cauchy inequalitjtr(AB)|2< tr(AA"tr(BB"), which
is valid for any operatorsA and B, while the equality is
realized forA=aB', wherea is a number. Thus the equality

~ T A
[tr(AVpVp) 1> = tr(A%p)tr(p) (Cy
implies
AVp= a\Fp. (C2

Now insert the eigenresolutiom;=E’k‘:1\s‘a(|sk><ek| into Eq.
(C2) and multiply it from the right byp,,, to obtain

VPrAlPm = P pr)- (C3
It is seen either that only one among the eigenvajy&sis
nonzero and then the corresponding eigenvector is also an

eigenvector fov&, or, more generally, thak acts as<1 in the
Hilbert space formed by eigenvectors @torresponding to

its nonzero eigenvalues. In both cases the measuremént of
on the statep always produces definite results.

Thus any operatoA that is dispersionless on the density
matrix p has to have the following block-diagonal matrix

representation:
~ [alpy O
A= kX k N ) ,
0 B

wherea is a real numberA,k],(k is thek X k unity matrix in the
k-dimensional Hilbert space formed by eigenvectors corre-

sponding to nonzero eigenvalues @f and finaIIyI:% is an
arbitrary (n—k) X (n—k) Hermitian matrix on the space or-
thogonal to the zero eigenvalues. It Has-k)? free param-

eters, and another free parameteﬁdﬁ coming with the real
numberea. Thus,A has

(n-k?+1

(C9

free parameters.

Note finally that various operators that are dispersionless
on a pure density matrix need not be mutually commuting.
As one of the simplest examples consider

100 010 0
C={0 0 0|, D={1 0 0}, |p=|0],
001 00 e 1

wheree is real. It is seen thak|)=|y) andD|y)=€y), but
[C,D]#0.
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APPENDIX D: RELATION BETWEEN POVMS AND
PROJECTIVE MEASUREMENTS

We outline how a POVM given by Eq$44)—(46) can be
connected with the usual projective measurements.

The general strategy is to couple the syst§rwith an-
other auxiliary systeng. The initial states ofS and G are,
respectivelyp (living in an n-dimensional Hilbert space()
and pg existing in anN-dimensional Hilbert spacé{(;. The
initial state of the overall systedi+G is thusp® pg.

Let now the composite system evolve in time under some

interaction, and let/ be the corresponding evolution opera-
tor. The final state is thus

Up @ poUt. (D1)
Let also
N
pg= 2 hona)(ha],  (halhg) = 8., (D2)
a=1
N
> h,=1 (D3)
a=1

be the eigenresolution of the density mafpix
One now measures for the systéhany Hermitian opera-

tor with a nondegenerate spectrum having an orthonormal set

of vectors

{19} 51 (D4)

as its eigenbase. The probability for obtaining the reault
and the postmeasured state®bbtained upon conditioning
on the resuliw read, respectively,

N

Ne = tHQJUp ® poldl|g,) = 2 hatr(pGPGPT), (D5)
p=1

N
(@althp @ pot'lgu) = = 2 nGLHGL,
aB=1

1

pa_)\_a

(D6)
where by definition
G = (g lulihg), (D7)
N ~ ~ AL~
> GG = (hjuUhg = 1. (D8)

a=1

If now the initial statepg is pure, then only one term
survives in the summations ové in Egs. (D5) and (D6),
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We have shown above how to generate some POVM mea-
surement. Here we discus¢more or less following
[34,47,56,57) how to generate a specifigiven) POVM,
that is, given operator§, existing in the Hilbert space{
and satisfying Eq(44), one should construdil) an initial
statepg; (2) a projective measurement ba§et) for G; (3) an
evolution operatot/; such that one gets for an arbitrgsy

N
Up ® pgll = 2, GupGl @ 9,00l
a=1
Then the POVM (44)—(46) accounts for what is
happening—after the interaction and after the selective mea-
surement in the basé)4)—with the initial ensemble de-

scribed byp.
To this end let us select two arbitrary orthonormal bases

{luties {190 N1 (D10)

in ‘H and inHg, respectively. Let the initial state @ be
chosen as the pure state

(D9)

P = 19190/ (D11

Assume that the interaction betweé&nand G is chosen

such that the corresponding unitary evolution operéatdn
the composite Hilbert spack ® Hg results in

N
Uu) ® |gr) = X G,lu) ® g,

a=1

(D12)

Note that due to the completeness reIatRﬁ;léLéazi,
as given by Eq(44), one has from EqD12)

N

(g1 @ (ultUu) @ g = > <ga|gﬂ><uk|ézxéﬂ|ul> =
a,B=1

(D13)

becaus€g,|gp) = dug
The specification ot/ is not yet complete. To complete

the definition ofZ/ in the composite Hilbert spack ® Hg
one should define its action on

|0ka> = |uk> ® |ga>a
for «=2,... N in addition to Eq.(D12). This will suffice,
since{|0k,a>}ﬂ;ffa:l is an orthonormal base in the composite
Hilbert H ® Hg.
This completion is possible and one can do that in many

different ways, because it amounts to completing the sat of
orthonormal vectors

Oy = {{{u|GludiL s,

(D14)

k=1,...n, (D15

and we return to POVM measurements as given by Egs.
(44)—(46). The situat_io_n_ is onl}/ slight_ly di_fferent for the gen- to an orthonormal basén H®H;) containingN X n vec-
eral case when the initial staig of G is mixed. Here we get  tors Then the column@r equivalently the rowsof 2/ in the

a convex sum of ordinary POVMs which corresponds to &yase|g, ) will be a set of of Nxn orthonormal vectors,
noisy (nonidea) measurement, since the postmeasurement ’

ensembles of the systefhare now described by mixed den-

sity matricesp,, even if the premeasurement ensemble was

described by a pure density matrix.

which is equivalent ta/ being a unitary matrix.
On the other hand, for a given unitary mattixthere is a
Hermitian operatorH,, such thati/=exgd(i7/%)Hy,] with
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some time parameter Thus,H,, can serve as a Hamiltonian {ransposition(O"),=0y. Note that for any orthogonal ma-
realizing the needed interaction. trix Oy, the matrix Oiz- is always double stochasti(EiOﬁ

:Ejoﬁzl, though the converse is not tri&7].
For a given orthogonal matri; there are many unitary

APPENDIX E: DERIVATION OF EQS. (114) and (115) matricesQ;; such thal0} =|Q;|% e.g.,Q; =€%0;, whered
One notes from Eqg21) and(28) that are arbitrary phases.
as21) 28 o The following proof is adopted from R€f70] and will be
ay o~ exg-pUTHU] e BAH realized in two steps.
ulpu, = Z —= = 7 (ED) First, one shows that EQF1) implies that
T P X=TyTo Thoay, (F3)
where we used the definitiocd=U_HU_—H of (). . )
Note the standard equality where the matrice$ are the so-called T transform defined as
5 follows. Any T transformT(m,I;t) has three parameters
Oogil bA o ¥ <I| andt, wherem and| are natural numbers between zero
-BO-BH — _ +SHO) asH | o BH )
€ -exp[ JO ds =€’ ]e ’ (B2 and n, and where &t<1. Its action on any vectoy, y'

=(Y1,....Yn), is defined as
where expmeans a time-antiordered exponent. The easiest ~ _
way to derive Eq(E?) is to differentiate both sides of it with z=T(m,1;t)y, (F4)

respect tO,B, and note that they both Satisfy the same firSt-Where the e|emen1ﬁ andym are mixed in a linear way:
order differential equation and have the same boundary con-

dition atﬂ: 0. zZ= (ylv ses vym—lvtym+ (1 _t)ylvym+lv ses vyl—lv(l _t)ym
One now gets F1Y, Yo - Y0 - (F5)
. B o . . . » ,
UiﬁUT: - _J ds &0 | . (E3) Tq gAet the matrix off(m,I;t) starting from then X n unity
0 matrix 1, one proceeds as follows:
Tracing out both sides, one finally obtains E¢$14) and (i)mm: 1— (T(m1;1)mm=t,
(115).
In footnote 29 we used the Peierls-Bogoliubov inequality. (i)” =1 (T(m):), =t,

The simplest way to derive this inequality from Eq$14)
and (115 is to note the well-known extremal feature of the

free energy: (i)m| =0— (Tm1;t)m=1-t,

- Tln tre 482 = minft p(H + Q)] + Ttr(p In p)}, (1) =0— (T(M,1;))m = 1 -1, (F6)
where the minimization is taken over all pOSSibIe denSitywh"e all other elements of the unity matrix are left un-
matrices. This can alternatively be written as changed.

BH-B0 _ A A Equation(F3) can now be proven by induction. It is ob-
tre = max exg- Btrlp(H + Q)] - tr(p In p)}. vious forn=2. Assume it holds fon—1. As seen from Egs.

(E4) (F1), (84), and(85), one hasy,<x;<Y;, So there exists an

. . . . o . jndexk such that
The desired Peierls-Bogoliubov inequality is then obtalned

by inserting the particular density matrp=e™"/Z in the Yk S X1 <Y (F7)
RHS of Eq.(E4). This implies

Xp =ty; + (1 -y (F8)
for some G<t<1. Define a T transfornT(1,k;t) via

APPENDIX F: PROOF OF HORN’'S THEOREM

We intend to prove that given two vectox$=(x;=---

=x,) andy'=(y;=---=y,) with the following majorization <X_1> =T(1,k;t)y, (F9)
relation (see Sec. IV B 1 for definitions y
X<y, (F1)  Where
there is a real orthogonal matr@=(O;) such that Y =2 o Yieen (L =DY1 iV, - Vo). (F10)
It is straighforward to show that

x =2, Ofy; = x=diad O diady]O"]. (F2)
i V> (X, oen X)) (F11)

Here diagy] means then X n diagonal matrix formed by the  Since we assumed that the implicatitFl) = (F3) is valid
vectory, while diagO diady]O'] is the vector formed by for n-1, there is a product of T transforms such that
diagonal elements of the matr® diady]O", andO™ means  (x,, ... %) =To - Tp_1y'.
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Thus this implication is proven by induction. APPENDIX G: DERIVATION OF EQ. (71)
Let us finally prove the implicatiorfFl) = (F2). Note

. . Here we find the maximum of
that with any T transformT(m,l;t) one can associate an

orthogonal matrixV(m,|;t) by reshaping Eq(F6) as fol- N N (] Qlgy?
lows: W2 = 2N MW2 = D) o, (G
R B a=1 a=1 <lr/,a| lv[/a>
(Dmm=1— (VML) mm= where the maximization is taken over all possible decompo-
sitions (34) of the mixed statg into pure states. Using Egs.
(1)” =1— (V(ml;t), = \E, (55) and (57) one writes equivalently
N ~ ~
~ I [tr(ﬁlIZle/ZHa)F
(D=0 (VM) =11, wh=2 - : (G2
a=1 tr pIl,,
(1)jm=0— (V(m, ;1)) = V1 -t. (F12)  where
Then Eq.(F4) is equivalent to I, = |m)(m,]. (G3)
z=diadV(m,I ;t)diaq:y]VT(mJ 1] (F13 The maximization in Eq(G2) is taken over all decompo-

o ) sitions of unity
To prove the implicatior{F1) = (F2) one again proceeds by

. . . . . . N
induction. It is obviously valid fom=2. One assumes its N
validity for n—1. This means Eq.F11) can be rewritten as %Ha‘ 1, (G4
T = diadV di /T A
(X, ... Xp)" = diadV diady]V'], (F14) where operator$l , exist in then-dimensional Hilbert space

whereV is some orthogonal matrix. To complete the proof,H'

define an orthogonal matrix The general idea of the follpwmg method was adopted

from [76]. Introduce an operatoX via
10
= P12 A o Lol
° (0 v)v’ (F19 PO = RGN = SR+ 5P (69

where the matri¥/ corresponds to the T transforindefined  then
in Eq. (F9) [via the correspondence described in Eel2)],

and rewrite Eqs(F11) and (F9) as tr(pY20pA1,) = Re t(I1,pX). (G6)
x = diad O diady]O"]. (F16)  Recall the Cauchy inequality
This proves the implicatiofFl) = (F2). Itr(AB)|2 < tr(AAtr(BBY), (G7)
Let us realize explicitly the construction given by Egs. . .
(F1) and (F2) for an example witm=3: which is valid for any operatoré and B, with the equality
being realized for
x=(0,0,0, y=(2,1,-3. (F17) .
- At
It is obvious thaix<y. For the index and for the parameter A=aB, (G8)
t mentioned before EqF7) one has wherea is a number.
3 AAppIying firstA Eq. (G5 and then Eq.(G7) with A
k=3, t=c. (F18  =11%2312 B=p2X11%2 one gets
Equation(F3) reads explicitly [tr(pY205M211,) 1 = [Re t(T1,pX) ]2 < [tr(IT,pX) 2
G9
o\ [L00\[EoZ\l2 (©9
1 1 ~ ~A A~ ~ AA A
01=|%z 2|0 1 O] 1| (F19 =[tr(T3 %2 2XTTY)|? < tr(Tp)tr(pXTT,X),
0/ \0 3 3/\5 0 5/\~3 (G10

Finally the orthogonal matri© in Eq. (F16) reads for the  one gets for Eqs(G2) and (G3)

present example: \

N ~ ~ ~
2 [tr(plIZQp]./ZHa)]Z

B o -2 . < > w(pXIX)  (G11)
5 T 5 a=1 tr Z)Ha a=1

o=[-vVi Vi -V3 (F20
NERNE R =tr(pX?) = tr(p"%0p"?X). (G12
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Equation(G9) is realized as an equality for

Im tr(I1,pX) = 0, (G13

while the Cauchy inequalityG11) becomes an equality for

f)l/zx| 7Ta> = aabl/2| 7Ta>!

wherea, are some numbers.

Both conditions(G13 and (G14) are realized simulta-
neously by taking{|m}"_, and {a,}"-, as, respectively,
eigenvectors and eigenvalues of the Hermitian operfitor
The representatiofi73) for X follows from Eq. (G5). The
desired equatior{71) for the maximal work dispersion is

obtained from Eqs(G11) and (G12 (the substracted term
W2 is trivial).

(G14)

APPENDIX H: DERIVATION OF EQ. (91)

Here we calculate the averaf@v?)},, of (w?), given by
Eq.(G1), over the measur@®1). Using Eq.(50) it is straight-

PHYSICAL REVIEW E 71, 066102(2005

forward to see that all the terms in the summation in the RHS

of Eqg. (G1) produce the same average. Thus,

N
fDM 5[2 Mif? - 1]¢>{Mi}
{W)}av _ i=1
N N
fDM 5[2 |Mi|2—1}
i=1
where we denoted
N
DM =[] dReM,dIm M, (H2)
i=1
and where one notes from EO)
n 2
* [ ~
M= X MM, Vp;piler Qe (H3)
jk=1
Passing to polar coordinates
27 N » N
[ov=] "Tiaa [ TImiam oo
0 =1 0 i=1
one gets
{Way _ <
N R = 2 pjpk<81|ﬂ|8]><8k|ﬂ|8k>_l (H5)
j.k=1
where
zz
lj = Hdw[E z- 1] (H6)
0 i=1 i=1
> pz
I=1
lo= Hdzé[Ez 1] (H7)
0 i=1

These integrals are calculated fprk=1,... n by the
same method. For example
i yJ
e de. Ey.-r
0 i=1 i=1
E Py
1=1
N
w N GX% 2%)
-
T(N+ 1)l = de,yjn—', (H8)
0 i=1
> Py
=1
n
w N eXP(‘EM)
=1
[Tdyy—F——,
0 I=1
> oy
I=1
foe) o0 N
:f ds| [Idyy? e>Fuiisnsd (H9)
0 0 i=1

where when passing from E¢H8) to Eqg. (H9) we changed
the integration variable=y;/r and integrated over from 0
to ce.

Further calculations are straightforward and lead to Eq.
(92). For dealing with this equation the following formula is

useful:
J el

where thef,’s are some positive numbers.

_2 In ﬁkH

(H10)
k=1 1<k O = 0k

k19

APPENDIX I: DERIVATION OF EQ. (107)

Here we give an example of the situation discussed
around Egs(105—107). The effect announced there exists
neither for two-level systems—simply because for & 2

traceless matriX) a zero eigenvalue implieQ =0—nor for
three-level systems. The proof of this last fact requires some
calculations which will be omitted.

The simplest situation that supports the effect is thus a
four-level system. The following example was inspired by
[77]. Consider a four-level system with Hamiltonian

)

whereA andB are 2x 2 matrices:

SN R

with a, b, ¢, andd being some real numbers.

Assume that the unitary operatﬁrT is given as an ex-
change interaction:

(1)

(12)
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. (o 1) 1 0
U,=\. , (13) 0 0
) 10 0 = ol 0,) = 1 (16)
where 1lis the 2X 2 unit matrix. 0 0
The HamiltonianUZHU, in the Heisenberg representation
at time 7 then reads It is now obvious that though
~pen (B O O oy o _
UIHUT: ( . ) (14) (0,[UJHU]M0y) = (04|H™0) =0 form=1,2,
0 A
- one still has
As follows from Egs.(11), (12), and(14), the matrix{},
0 0 0 0 (04[UTHUl0,) - (0,/H%0y) = b*(c - d) # O,
A 0O c-d0 O
Q= , (15) A .
0 0 00 (0[UTHU 10,) = (04 H*|0y) = 2abP(c — d) + b*(c? - &?)
0O 0 0d-c 20 (17)
has a doubly degenerate eigenvalue equal to zero, and the
corresponding eigenvectors can be taken as These relations were used in H407).
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